【电力系统】基于节点电价的电网对电动汽车接纳能力评估模型研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着电动汽车的广泛应用,其充电行为对电网的负荷特性、电能质量和运行成本等方面产生了显著影响。研究电网对电动汽车的接纳能力,对于合理规划电动汽车充电设施布局、优化电网运行方式以及促进电动汽车与电网的协调发展具有重要意义。基于节点电价的评估模型能够综合考虑电网的潮流分布、运行成本和各节点的供电能力等因素,更准确地评估电网对电动汽车的接纳能力。

节点电价的计算

  • 基于潮流计算的方法

    :通过求解电网的潮流方程,得到各节点的电压、电流和功率分布。在此基础上,根据边际成本理论,计算出各节点增加单位负荷时对电网运行成本的影响,从而得到节点电价。例如,采用直流潮流模型或交流潮流模型,结合最优潮流算法,考虑发电机出力成本、网络损耗等因素,迭代计算出节点电价。

  • 考虑电网阻塞的影响

    :当电网出现阻塞时,不同节点之间的电力传输受到限制,导致节点电价出现差异。可以通过引入阻塞管理模型,分析阻塞情况下的电网潮流分布和功率平衡关系,计算出考虑阻塞因素的节点电价。例如,采用基于灵敏度分析的方法,计算阻塞对节点电价的影响程度,或者利用混合整数规划模型来处理阻塞约束条件下的节点电价计算问题。

电网对电动汽车接纳能力评估模型的构建

  • 电动汽车充电负荷模型

    :根据电动汽车的保有量、充电行为模式(如充电时间、充电功率等)以及用户出行规律,建立电动汽车充电负荷模型。可以采用概率统计方法,如蒙特卡洛模拟,来模拟大量电动汽车的充电行为,得到不同时间和节点上的充电负荷分布。

  • 电网运行约束条件

    :考虑电网的物理约束,如线路传输容量、变压器容量、节点电压限制等,以及电网的运行安全约束,如功率平衡约束、短路电流限制等。这些约束条件将限制电动汽车充电负荷的接入规模和分布。

  • 基于节点电价的目标函数

    :以电网运行成本最小化或电网接纳电动汽车能力最大化为目标,构建目标函数。例如,目标函数可以表示为电网总发电成本、网络损耗成本与电动汽车充电成本之和的最小值,其中电动汽车充电成本可以根据节点电价和充电负荷来计算。通过优化算法求解目标函数,得到在满足电网运行约束条件下的电动汽车最大接纳能力。

模型求解与分析

  • 优化算法选择

    :针对构建的评估模型,选择合适的优化算法进行求解。常用的算法包括遗传算法、粒子群优化算法、内点法等。这些算法能够在复杂的约束条件下搜索到最优解或近似最优解。例如,遗传算法通过模拟生物进化过程中的选择、交叉和变异操作,在解空间中搜索最优解;粒子群优化算法则通过粒子之间的信息共享和协同搜索,逐步逼近最优解。

  • 结果分析与验证

    :对模型求解得到的结果进行分析,包括电动汽车的接纳容量、充电负荷分布、节点电价变化等。通过与实际电网数据或其他评估方法的结果进行对比验证,评估模型的准确性和有效性。同时,进行敏感性分析,研究不同因素(如电网结构、电动汽车充电特性、节点电价政策等)对电网接纳电动汽车能力的影响程度,为电网规划和运行管理提供决策依据。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

### 含电动汽车的微电网优化调度 #### 基于节点电价电网电动汽车接纳能力评估模型 一种基于节点电价电网电动汽车接纳能力评估模型被提出,该模型不仅考虑了节点电价差异、电动汽车充电负荷的随机性,还涵盖了电网的安全稳定性约束。这使得对于电网接纳电动汽车能力有了更为精确的评价方式[^1]。 ```matlab % MATLAB代码片段展示如何计算不同节点下的电动汽车接纳能力 function acceptance_capacity = calculate_acceptance(node_prices, ev_loads) % node_prices 是各个节点的价格向量 % ev_loads 是预测的电动汽车负载矩阵 % 计算接纳容量逻辑... acceptance_capacity = ...; % 返回接纳容量结果 end ``` #### 多目标粒子群算法用于多个微电网协调运行与优化 在另一项研究中,采用多目标粒子群算法来实现多个微电网之间的协调运行与优化。此方法深入探讨了分布式电源的各种数学模型,并构建了一个以经济效益最大化为目标函数的整体优化框架。特别值得注意的是,在峰平谷不同时段内实施不同的联合协调调度策略,从而有效降低了整个系统的运营成本并实现了削峰填谷的效果[^2]。 ```python def optimize_multi_microgrids(load_profiles, price_schedules): """ 使用多目标粒子群算法优化多个微电网间的协同运作。 参数: load_profiles (list): 不同时间段内的负荷分布列表。 price_schedules (dict): 针对各时段设定的价格表。 返回值: optimized_schedule (DataFrame): 经过优化后的调度计划数据框。 """ # 实现PSO算法的具体细节... return optimized_schedule ``` #### 改进多目标灰狼优化算法结合V2G技术的应用 还有研究表明,利用改进版的多目标灰狼优化(GWO)算法配合车辆到电网(Vehicle-to-Grid,V2G)技术来进行风电光伏储能及负荷组成的微型网络的日前提前规划调度。这种方法显著提升了原有GWO算法性能的同时也解决了复杂的多目标优化难题。实验结果显示其具有较高的实用价值和发展潜力[^3]。 ```matlab % 展示应用IMOGWO-V2G进行日提前规划的一个简单例子 function schedule = daily_optimization(generation_forecast, demand_profile) % generation_forecast 包括风能和太阳能发电预报 % demand_profile 用户侧需求曲线 % 应用IMOGWO-V2G算法执行优化过程... schedule = ... ; % 输出最终制定好的每日调度安排 end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值