✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、引言
在全球积极推动能源转型、应对气候变化的大背景下,传统集中式能源系统在能源利用效率、环境友好性以及应对能源需求多样化等方面的局限性日益凸显。在此形势下,综合能源微网凭借其高效整合多种能源、灵活满足用户多元需求以及显著降低能源传输损耗等优势,成为能源领域的研究热点与发展方向。与此同时,共享储能作为一种创新的储能应用模式,能够有效提升储能资源的利用效率、降低用户储能成本,进一步增强了综合能源微网的运行稳定性与经济性。
然而,综合能源微网中涉及多种能源形式的转换、存储与分配,共享储能的引入又增加了系统的复杂性与利益主体的多样性,使得如何实现综合能源微网与共享储能的协同优化运行成为一个极具挑战性的问题。主从博弈理论作为一种能够有效处理多主体决策交互问题的工具,为解决这一难题提供了新的视角与方法。通过构建基于主从博弈理论的优化模型,可以清晰刻画微网运营商、共享储能服务商以及用户聚合商等不同利益主体之间的策略互动关系,从而实现系统整体效益与各主体利益的平衡优化。
二、综合能源微网与共享储能系统概述
2.1 综合能源微网系统架构与运行机制
综合能源微网是一个高度集成的小型能源系统,通常涵盖电力、热力、天然气等多种能源形式。其系统架构主要包括分布式能源发电单元、能源转换设备、储能装置、负荷以及智能控制系统。分布式能源发电单元如风力发电机、光伏电池板利用可再生能源发电,燃气轮机、微型锅炉等则通过燃烧化石燃料产生电能和热能。能源转换设备实现不同能源形式之间的转换,例如电转热(P2H)装置将电能转化为热能,满足用户的供热需求;而吸收式制冷机则可利用热能产生冷能,用于空调制冷。
在运行机制方面,综合能源微网具备并网和孤岛两种运行模式。并网模式下,微网与大电网相连,实现电力的双向交互,当微网内能源生产过剩时可向大电网售电,能源不足时则从大电网购电。孤岛模式则是在电网故障或特定运行需求下,微网独立运行,依靠自身的能源资源满足内部负荷需求。这种灵活的运行模式能够提高能源供应的可靠性,降低对外部大电网的依赖。
2.2 共享储能系统的工作原理与优势
共享储能系统是一种集中配置储能资源,并为多个用户或微网提供储能服务的新型储能应用模式。其工作原理是通过建设大规模的储能电站,如锂离子电池储能、铅酸电池储能等,将电能存储起来,在用户或微网需要时释放电能。共享储能服务商根据用户存储或取用的容量收取服务费用,通过合理制定单位容量租赁费用,引导用户合理使用储能服务。
相较于传统的分布式储能方式,共享储能具有多方面的优势。从成本角度看,共享储能避免了每个用户单独配置储能设备的高额投资,通过规模化效应降低了单位储能成本。在资源利用效率方面,共享储能能够整合不同用户的负荷特性,实现储能资源的优化配置,提高储能设备的利用率。例如,某些用户在白天用电低谷期有多余电能需要存储,而另一些用户在夜间用电高峰期需要取用储能电能,共享储能系统可以协调这些用户的需求,使储能设备在不同时段得到充分利用。此外,共享储能还能提升系统的灵活性与可靠性,更好地应对负荷波动和能源供应的不确定性。
三、基于主从博弈的系统模型构建
3.1 系统利益主体分析
3.1.1 微网运营商
微网运营商在综合能源微网系统中扮演着核心角色,作为电网与用户的中介,承担着能源交易与系统运行管理的双重职责。在能源交易方面,微网运营商需要制定合理的售电价与售热价策略,与用户侧进行能源交易,通过买卖差价获取收益。从物理层面看,微网运营商配备有燃气轮机等发电和供热设备,以保障用户侧的电能与热能供应。同时,微网运营商还需协调分布式能源发电、储能设备以及与大电网的交互,确保整个微网系统的稳定、高效运行。
3.1.2 共享储能服务商
共享储能服务商的主要功能是为用户聚合商提供专业的储能服务,以增强用户侧负荷调整的灵活性。共享储能服务商通过建设和运营共享储能电站,根据用户存储或取用的容量收取相应的服务费用。其收益主要取决于单位容量租赁费用的制定以及用户对储能服务的使用量。为了实现自身利益最大化,共享储能服务商需要合理规划储能电站的容量配置、优化储能设备的充放电策略,并制定具有吸引力的服务价格,以提高用户使用共享储能服务的积极性。
3.1.3 用户聚合商
用户聚合商将微网内分布式用户群进行等效整合,代表用户群体参与能源市场交易和与微网运营商的博弈。用户聚合商一方面需要响应微网运营商的电价和热价策略,调整用户的用电和用热行为,以降低用户群体的能源使用成本;另一方面,用户聚合商可以通过参与共享储能服务,利用储能设备在电价低谷期存储电能,在电价高峰期释放电能,实现用户侧的削峰填谷,进一步优化用户的能源消费成本。同时,用户聚合商还需考虑用户的舒适度和能源需求的满足程度,在降低成本与保障服务质量之间寻求平衡。
⛳️ 运行结果
🔗 参考文献
[1] 徐慧慧,彭婧,田云飞,等.计及阶梯绿证交易机制与源荷双重响应的含氢综合能源系统优化调度方法:CN202411059498.9[P].CN119047743A[2025-05-07].
[2] 陈锦鹏,胡志坚,陈嘉滨,等.考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度[J].[2025-05-07].
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇