✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本论文围绕连续监控温度传感器无线网络展开深入研究。针对传统温度监测网络存在的能耗高、实时性差等问题,设计了一种适用于连续温度监控的无线网络架构,研究了网络中的数据采集、传输、处理关键技术。通过构建网络性能模型,设计基于优化算法的网络参数配置方案,并利用 Matlab 进行仿真验证。结果表明,所设计的网络能够实现稳定、高效的温度连续监控,有效降低网络能耗,延长网络生命周期,为温度监控应用提供了可靠的技术方案。
关键词
温度传感器;无线网络;连续监控;能耗优化;Matlab 仿真
一、引言
1.1 研究背景
在工业生产、环境监测、智能建筑、医疗卫生等众多领域,温度作为关键物理参数,其精确、连续的监测至关重要 。传统的有线温度监测方式存在布线复杂、扩展性差等缺陷,难以满足现代多样化的监测需求。而基于无线网络的温度传感器网络凭借部署灵活、成本低等优势,逐渐成为温度监测的主流方式 。然而,现有的温度传感器无线网络在实现连续监控时,面临着能耗高导致网络生命周期短、数据传输实时性不足影响监控效果等问题,因此,开展连续监控温度传感器无线网络研究具有重要的现实意义。
1.2 研究现状
国内外学者在温度传感器无线网络领域进行了大量研究。在网络架构方面,提出了星型、树型、网状等多种拓扑结构 ;在能耗优化上,研究了节能路由协议、动态功率控制等技术 ;在数据处理方面,应用了数据融合、压缩算法等 。但针对连续监控场景下的温度传感器无线网络研究仍存在不足,如在保证连续数据采集和传输的同时,如何有效平衡网络能耗与性能,仍是亟待解决的问题。
1.3 研究目的与意义
本研究旨在设计一种高效的连续监控温度传感器无线网络,通过优化网络架构、数据传输与处理策略,实现温度的高精度连续监测,降低网络能耗,提高网络的可靠性和实时性 。研究成果将为工业生产过程监控、环境气候研究、冷链物流温度监测等实际应用提供技术支持,推动温度传感器无线网络在更多领域的应用和发展。
二、连续监控温度传感器无线网络架构设计
2.1 网络层次结构
连续监控温度传感器无线网络采用分层架构,主要包括感知层、传输层和应用层 。感知层由大量分布在监测区域的温度传感器节点组成,负责实时采集温度数据;传输层由汇聚节点和路由节点构成,汇聚节点收集感知层节点的数据,并通过路由节点将数据传输至应用层;应用层接收处理后的温度数据,进行存储、分析和展示,为用户提供温度监控服务。
2.2 节点功能设计
- 温度传感器节点:具备温度数据采集、简单数据处理(如滤波)和无线通信功能 。为降低能耗,节点采用低功耗微控制器和无线通信模块,在休眠模式下可大幅降低功耗,定时唤醒采集温度数据并发送。
- 汇聚节点:负责收集感知层多个传感器节点的数据,对数据进行初步融合处理,减少数据传输量。同时,与路由节点建立通信连接,将处理后的数据转发至应用层 。
- 路由节点:根据网络拓扑和链路状态,选择最优路径将汇聚节点的数据传输至应用层 。路由节点需具备较强的路由计算和数据转发能力,以保证数据的可靠传输。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇