笔者通过阅读colmap论文后,梳理了论文提出的五项贡献,供学习回顾
原文连接:Structure-from-Motion Revisited
思维导图一览
新的几何验证策略
通过增强场景图质量提高初始化和三角测量的鲁棒性
- 采用RANSAC估计基本矩阵F,如果找到至少 N F N_F NF个内点,则认为通过几何验证
- 对于校准好的图像,采用RANSAC估计本质矩阵 E E E,如果找到至少 N E N_E NE个内点,满足 N E N F > ϵ E F \frac{N_E}{N_F}>\epsilon_{EF} NFNE>ϵEF,则认为校准正确
- 采用RANSAC估计单应性矩阵H,通过内点个数 N H N_H NH对变化进行分类,如果 N H N F < ϵ H F \frac{N_H}{N_F}<\epsilon_{HF} NFNH<ϵHF,则认为该图像对为一般场景移动
- 对同时满足 N E N F > ϵ E F \frac{N_E}{N_F}>\epsilon_{EF} NFNE>ϵEF和 N H N F < ϵ H F \frac{N_H}{N_F}<\epsilon_{HF} NFNH<ϵHF的图像对,通过分解本质矩阵估计三角测量角度 α m \alpha_m αm,利用 α m \alpha_m αm区分图像对场景移动类型
一般场景移动(一般)
旋转场景移动(全景)
平移场景移动(平面) - 采用RANSAC在图像边界处估计相似变换内点数 N S N_S NS,如果 N S N F > ϵ S F ∨ N S N E > ϵ S E \frac{N_S}{N_F}>\epsilon_{SF} \lor \frac{N_S}{N_E}>\epsilon_{SE} NFNS>ϵSF∨NE