COLMAP论文记录

笔者通过阅读colmap论文后,梳理了论文提出的五项贡献,供学习回顾
原文连接:Structure-from-Motion Revisited

思维导图一览

在这里插入图片描述

新的几何验证策略

通过增强场景图质量提高初始化和三角测量的鲁棒性

  1. 采用RANSAC估计基本矩阵F,如果找到至少 N F N_F NF个内点,则认为通过几何验证
  2. 对于校准好的图像,采用RANSAC估计本质矩阵 E E E,如果找到至少 N E N_E NE个内点,满足 N E N F > ϵ E F \frac{N_E}{N_F}>\epsilon_{EF} NFNE>ϵEF,则认为校准正确
  3. 采用RANSAC估计单应性矩阵H,通过内点个数 N H N_H NH对变化进行分类,如果 N H N F < ϵ H F \frac{N_H}{N_F}<\epsilon_{HF} NFNH<ϵHF,则认为该图像对为一般场景移动
  4. 对同时满足 N E N F > ϵ E F \frac{N_E}{N_F}>\epsilon_{EF} NFNE>ϵEF N H N F < ϵ H F \frac{N_H}{N_F}<\epsilon_{HF} NFNH<ϵHF的图像对,通过分解本质矩阵估计三角测量角度 α m \alpha_m αm,利用 α m \alpha_m αm区分图像对场景移动类型
    一般场景移动(一般)
    旋转场景移动(全景)
    平移场景移动(平面)
  5. 采用RANSAC在图像边界处估计相似变换内点数 N S N_S NS,如果 N S N F > ϵ S F ∨ N S N E > ϵ S E \frac{N_S}{N_F}>\epsilon_{SF} \lor \frac{N_S}{N_E}>\epsilon_{SE} NFNS>ϵSFNE
### COLMAP 三维重建与视觉几何处理 COLMAP 是一款广泛应用于学术界和工业界的开源软件包,主要用于解决大规模图像集合的结构化运动(SfM)问题以及密集多视角立体匹配(dense MVS)。该工具支持从二维图片集中恢复出精确的三维模型,并能生成高质量的点云图。 #### 安装配置 为了使用 COLMAP 进行三维重建工作,需先安装依赖库并编译源码或者下载预构建二进制文件。对于 Linux 和 macOS 用户来说,官方提供了详细的安装说明文档[^2];而对于 Windows 平台,则建议通过 Docker 镜像来运行程序。 #### 数据准备 准备好待处理的照片集之后,在执行任何操作前应该确保所有输入照片都经过适当校正,比如去除镜头畸变等影响因素。此外还需要注意拍摄角度多样性以提高最终成果质量。 #### 基本流程概述 1. **特征提取**:利用 SIFT 特征描述子算法自动识别每张照片中的显著位置; 2. **两两配准**:寻找不同视图间共有的兴趣点对并将它们关联起来形成初步对应关系; 3. **全局优化**:采用 Bundle Adjustment 技术调整相机姿态参数使得整体误差最小化; 4. **稀疏重建**:根据上述结果建立初始粗略版本的空间坐标系表示物体外形轮廓; 5. **稠密重建**:借助 PatchMatch 或者其他方法进一步细化表面细节直至满足应用需求为止。 ```bash colmap feature_extractor --image_path /path/to/images --database_path database.db colmap exhaustive_matcher --database_path database.db colmap mapper --database_path database.db --image_path /path/to/images --output_path sparse colmap image_undistorter --image_path /path/to/images --input_path sparse/0 --output_path dense colmap patch_match_stereo --workspace_path dense colmap stereo_fusion --workspace_path dense --output_path fused.ply ``` 以上命令序列展示了如何依次完成各阶段任务,具体选项可根据实际情况灵活设置。 #### 可视化查看 最后可以加载 `fused.ply` 文件至 MeshLab 等第三方应用程序中直观观察所得产物效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值