不需要COLMAP的3DGS投影?

论文标题:COLMAP-Free 3D Gaussian Splatting

论文作者:Yang Fu, Sifei Liu, Amey Kulkarni, Jan Kautz, Alexei A. Efros, Xiaolong Wang

导读:
本文介绍了一种新的神经渲染方法,用于在不需要预先计算相机参数的条件下进行场景重建和新视角合成。该方法基于最近提出的3D高斯投影技术,利用了其显式的点云表示和输入视频流的时间连续性。该方法可以在按顺序处理输入帧的同时,逐渐增加3D高斯集合,从而实现了对大运动变化的场景的高效和真实的渲染。该方法在视角合成和相机姿态估计方面显著优于先前提出的方法。©️【深蓝AI】编译

1. 问题引入

随着神经辐射场(NeRFs)的兴起,照片级真实感场景重建和视角合成领域取得了明显的进步。训练NeRFs的一个关键步骤是为每张输入图像预先计算相机姿态。这通常是通过运行Structure-from-Motion(SfM)库COLMAP来完成的。然而,这种预处理不仅耗时,而且由于特征提取错误的敏感性以及处理单调或重复区域的困难,也可能会失败。

最近的一些研究希望通过将姿态估计纳入NeRF框架,来减少对SfM的依赖。同时进行3D场景重建和相机定位一直是计算机视觉领域的一个难题。在NeRF及其隐式表示的背景下,这个问题变得更加复杂,因为优化过程通常增加额外的约束。例如,BARF要求初始姿态与真实姿态接近(在15°内),NeRFmm主要适用于正面场景。最新的Nope-NeRF需要很长的训练时间(30小时),在相机姿态变化很大的情况下(例如360度)效果不佳,如图1的上面两张图所示。本质上,NeRFs是通过更新从相机位置发出的射线投影来间接地优化相机参数,这使得优化变得具有挑战性。

在这里插入图片描述
▲图1|新视角合成和相机姿态估计的比较。我们提出的无需COLMAP的3D高斯投影(CF-3DGS)在不依赖已知相机参数的情况下实现了更稳定的姿态估计和更优的新视角合成质量。©️【深蓝AI】编译

2. 方案提出

最近,3DGS投影方法被提出,通过采用点云表示扩展了NeRF中的体素渲染。虽然最初的想法是使用预先计算的相机参数的,但我们发现它为在没有SfM预处理的情况下,进行视角合成提供了一个新的方向。为此,本文提出了不需要COLMAP的3DGS投影(CF

### 使用 COLMAP 进行 3D 重建和映射 COLMAP 是一种广泛使用的多视图几何库,支持密集建模以及稀疏和稠密三维重建。对于涉及 3D 地面实况 (3DGS) 的操作,在 COLMAP 中主要通过以下几个方面实现: #### 图像特征提取与匹配 为了构建高质量的 3D 模型,首先需要从输入图像集中提取并匹配特征点。这一步骤能够识别同视角下的相同物理位置,从而建立相机姿态之间的相对关系。 ```bash colmap feature_extractor \ --database_path path/to/database.db \ --image_path path/to/images/ colmap exhaustive_matcher \ --database_path path/to/database.db ``` 这些命令会处理所有给定图片,并将检测到的关键点保存至数据库文件中[^1]。 #### 初始稀疏重建 一旦完成了特征匹配,则可以执行增量 SfM(Structure-from-Motion),即逐步增加新观察来优化现有结构,最终形成完整的场景框架。 ```bash mkdir sparse colmap mapper \ --database_path path/to/database.db \ --output_path sparse/ ``` 此过程会产生一系列文本文件描述各个摄像机的位置及其对应的空间坐标系内的可见点云数据[^2]。 #### 密集重建 完成初步骨架搭建之后,下一步便是填充细节——也就是所谓的“纹理化”。借助于立体视觉算法或多视角光度一致性约束条件,可以在已知轮廓基础上进一步细化表面属性。 ```bash mkdir dense colmap image_undistorter \ --input_path sparse/0 \ --output_path dense/ \ --image_path path/to/images/ colmap patch_match_stereo \ --workspace_path dense/ \ --output_path dense/fused.ply ``` 上述脚本片段展示了如何利用 COLMAP 工具链生成带有颜色信息的三角网格模型[^3]。 #### 结合 NeRF 技术改进效果 值得注意的是,尽管传统方法已经相当成熟,但近年来兴起的神经辐射场(NeRF)提供了另一种思路:通过对大量样本学习得到连续函数表示,使得即使面对复杂光照变化也能保持良好表现力。因此,在某些特定应用场景下考虑引入此类先进模型或许能带来意想到的效果提升。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值