零向量
变换后落在原点的向量的集合称矩阵的零空间或核(Kernel)
A
x
→
=
A\overrightarrow {x}=
Ax=
[
0
0
]
\begin{bmatrix} 0\\ 0\\ \end{bmatrix}
[00]
零空间为这个向量方程的所有可能解
非方阵
变换后基向量的坐标作为矩阵的列
列空间的维数与输入空间的维数相等
3*2矩阵:二维空间映射到三维空间上
两列:输入空间有两个基向量
三行:每一个基向量变换后用三个独立坐标描述
2*3矩阵:三维 → \rightarrow →二维
点积与对偶性
[
2
7
1
]
.
[
8
2
8
]
\begin{bmatrix}2\\7\\1\\ \end{bmatrix}.\begin{bmatrix}8\\2\\8\\\end{bmatrix}
⎣⎡271⎦⎤.⎣⎡828⎦⎤
v
→
.
w
→
\overrightarrow{v}.\overrightarrow{w}
v.w
两维数相同的向量相乘,将相应坐标配对相乘相加
w → \overrightarrow{w} w朝过原点和 v → \overrightarrow{v} v终点的直线上投影,投影长度与 v → \overrightarrow{v} v长度相乘 ⇒ \Rightarrow ⇒ v → \overrightarrow{v} v点乘 w → \overrightarrow{w} w
若 v → \overrightarrow{v} v与 w → \overrightarrow{w} w方向相反,结果为负值