零空间、点积与对偶性

本文探讨了零向量在矩阵变换中的概念,阐述了零空间的定义和性质,以及如何通过矩阵运算找到所有可能的解。同时,涉及了点积与向量投影的关系,解释了二维与三维空间中矩阵的作用。重点在于向量空间的映射和对偶性应用。
摘要由CSDN通过智能技术生成

零向量

变换后落在原点的向量的集合称矩阵的零空间或核(Kernel)
A x → = A\overrightarrow {x}= Ax = [ 0 0 ] \begin{bmatrix} 0\\ 0\\ \end{bmatrix} [00]
零空间为这个向量方程的所有可能解

非方阵

变换后基向量的坐标作为矩阵的列
列空间的维数与输入空间的维数相等
3*2矩阵:二维空间映射到三维空间上
两列:输入空间有两个基向量
三行:每一个基向量变换后用三个独立坐标描述

2*3矩阵:三维 → \rightarrow 二维

点积与对偶性

[ 2 7 1 ] . [ 8 2 8 ] \begin{bmatrix}2\\7\\1\\ \end{bmatrix}.\begin{bmatrix}8\\2\\8\\\end{bmatrix} 271.828
v → . w → \overrightarrow{v}.\overrightarrow{w} v .w
两维数相同的向量相乘,将相应坐标配对相乘相加

w → \overrightarrow{w} w 朝过原点和 v → \overrightarrow{v} v 终点的直线上投影,投影长度与 v → \overrightarrow{v} v 长度相乘 ⇒ \Rightarrow v → \overrightarrow{v} v 点乘 w → \overrightarrow{w} w

v → \overrightarrow{v} v w → \overrightarrow{w} w 方向相反,结果为负值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>