最优控制和轨迹规划学习笔记 包含多个实际案例 主要思路是使用优化算法来找到车辆的最佳路径

本文是关于最优控制和轨迹规划的学习笔记,包括倒立摆控制、车辆路径规划和参考点路径规划的实际案例。通过使用优化算法解决最速降线问题,规避车辆运动学约束,以及进行离散点参考线和lattice横向距离规划。文章详细介绍了如何利用fminunc和casadi库找到最佳路径,并避免障碍物,涉及知识点包括优化算法、数值计算和路径规划。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最优控制和轨迹规划学习笔记
包含多个实际案例
倒立摆上翻控制
满足车辆运动学约束的路径规划
离散点参考线优化
lattice横向距离规划
这段代码包含了三个程序,我们将分别对它们进行详细的分析。

  1. 最速降线问题求解

这个程序的主要功能是通过优化算法求解最速降线问题。它应用于物理学、工程学和数学等领域,用于确定两个给定点之间的最速下降路径。

程序的主要思路是通过将路径分成多个小段,然后通过优化算法找到每个小段的最佳下降路径。程序首先定义起点和终点的坐标,然后根据给定的分段数目将路径分成多个小段。接下来,它使用fminunc函数和CostTime函数来进行优化,找到最佳的路径。最后,程序使用plot函数绘制出找到的路径和解析解的路径。

CostTime函数是目标函数,它计算路径的总时间。它通过计算每个小段的长度和速度来计算总时间。程序中的for循环用于计算每个小段的长度,并将其加到总时间中。

  1. 车辆路径规划

这个程序的主要功能是进行车辆路径规划,以避开给定的障碍物。它应用于自动驾驶、机器人导航和交通控制等领域,用于确定车辆的最佳路径,以避开障碍物并到达目标位置。

程序的主要思路是使用优化算法来找到车辆的最佳路径。程序首先定义车辆的初始位置和障碍物的位置和尺寸。然后,它使用循环来计算横向偏移边界,以确保车辆不会碰到障碍物。接下来,程序使用casadi库来进行优化,定义决策变量和目标函数,并添加约束条件。最后,程序使用plot函数绘制出找到的路径和障碍物。

  1. 参考点路径规划

这个程序的主要功能是进行参考点路径规划,以使车辆按照给定的参考点行驶。它应用于自动驾驶、机器人导航和路径规划等领域ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值