009地球系到地理系

e系g系更形象的理解方式。如图所示:

这里写图片描述

图中, λ \lambda λ表示经度, φ \varphi φ表示纬度。
e系 z e z_e ze轴正向旋转 λ \lambda λ,那么此时 x e x_e xe轴就在本初子午面上,过本初子午线与赤道线的交点。此时 x e x_e xe轴的指向为的天方向
观察g系 x g x_g xg轴的指向,其指向东方向。此时 x e x_e xe x g x_g xg还相差 9 0 ∘ 90^\circ 90,所以还要再旋转 9 0 ∘ 90^\circ 90。即e系 z e z_e ze轴正向旋转 λ + 9 0 ∘ \lambda+90^\circ λ+90便能使 x e x_e xe x g x_g xg同向。

之后便需要绕 x e x_e xe轴旋转,如果让 z e z_e ze z g z_g zg同向,便实现了两个坐标系的旋转变换。
z g z_g zg与赤道平面的夹角为 φ \varphi φ,那么与 z e z_e ze的夹角为 9 0 ∘ − φ 90^\circ-\varphi 90φ,因此绕 x e x_e xe轴旋转 9 0 ∘ − φ 90^\circ-\varphi 90φ即可。
这样便实现了从e系g系的转换。

z e z_e ze轴旋转 λ + 90 \lambda + 90 λ+90
[ c o s ( λ + 9 0 ∘ ) s i n ( λ + 9 0 ∘ ) 0 − s i n ( λ + 9 0 ∘ ) c o s ( λ + 9 0 ∘ ) 0 0 0 1 ] = [ − s i n λ c o s λ 0 − c o s λ − s i n λ 0 0 0 1 ] \begin{bmatrix} cos(\lambda+90^\circ) & sin(\lambda+90^\circ) & 0\\ -sin(\lambda+90^\circ) & cos(\lambda+90^\circ) & 0\\ 0 & 0 & 1\\ \end{bmatrix} = \begin{bmatrix} -sin\lambda & cos\lambda & 0\\ -cos\lambda & -sin\lambda & 0\\ 0 & 0 & 1\\ \end{bmatrix} cos(λ+90)sin(λ+90)0sin(λ+90)cos(λ+90)0001=sinλcosλ0cosλsinλ0001

x e x_e xe轴旋转 90 − φ 90-\varphi 90φ
[ 1 0 0 0 c o s ( 9 0 ∘ − φ ) s i n ( 9 0 ∘ − φ ) 0 − s i n ( 9 0 ∘ − φ ) c o s ( 9 0 ∘ − φ ) ] = [ 1 0 0 0 s i n φ c o s φ 0 − c o s φ s i n φ ] \begin{bmatrix} 1 & 0 & 0\\ 0 & cos(90^\circ - \varphi) & sin(90^\circ - \varphi)\\ 0 & -sin(90^\circ - \varphi) & cos(90^\circ - \varphi)\\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\ 0 & sin\varphi & cos\varphi\\ 0 & -cos\varphi & sin\varphi \end{bmatrix} 1000cos(90φ)sin(90φ)0sin(90φ)cos(90φ)=1000sinφcosφ0cosφsinφ

可得:
C e g = [ 1 0 0 0 s i n φ c o s φ 0 − c o s φ s i n φ ] [ − s i n λ c o s λ 0 − c o s λ − s i n λ 0 0 0 1 ] = [ − s i n λ c o s λ 0 − s i n φ c o s λ − s i n φ s i n λ c o s φ c o s φ c o s λ c o s φ s i n λ s i n φ ] C_e^g = \begin{bmatrix} 1 & 0 & 0\\ 0 & sin\varphi & cos\varphi\\ 0 & -cos\varphi & sin\varphi \end{bmatrix} \begin{bmatrix} -sin\lambda & cos\lambda & 0\\ -cos\lambda & -sin\lambda & 0\\ 0 & 0 & 1\\ \end{bmatrix} = \begin{bmatrix} -sin\lambda & cos\lambda & 0 \\ -sin\varphi cos\lambda & -sin\varphi sin\lambda & cos\varphi \\ cos\varphi cos\lambda & cos\varphi sin\lambda & sin\varphi \end{bmatrix} Ceg=1000sinφcosφ0cosφsinφsinλcosλ0cosλsinλ0001=sinλsinφcosλcosφcosλcosλsinφsinλcosφsinλ0cosφsinφ
C g e = [ − s i n λ − s i n φ c o s λ c o s φ c o s λ c o s λ − s i n φ s i n λ c o s φ s i n λ 0 c o s φ s i n φ ] C_g^e = \begin{bmatrix} -sin\lambda & -sin\varphi cos\lambda & cos\varphi cos\lambda\\ cos\lambda & -sin\varphi sin\lambda & cos\varphi sin\lambda\\ 0 & cos\varphi & sin\varphi \end{bmatrix} Cge=sinλcosλ0sinφcosλsinφsinλcosφcosφcosλcosφsinλsinφ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值