从e系到g系更形象的理解方式。如图所示:
图中,
λ
\lambda
λ表示经度,
φ
\varphi
φ表示纬度。
当e系绕
z
e
z_e
ze轴正向旋转
λ
\lambda
λ,那么此时
x
e
x_e
xe轴就在本初子午面上,过本初子午线与赤道线的交点。此时
x
e
x_e
xe轴的指向为的天方向。
观察g系中
x
g
x_g
xg轴的指向,其指向东方向。此时
x
e
x_e
xe与
x
g
x_g
xg还相差
9
0
∘
90^\circ
90∘,所以还要再旋转
9
0
∘
90^\circ
90∘。即e系绕
z
e
z_e
ze轴正向旋转
λ
+
9
0
∘
\lambda+90^\circ
λ+90∘便能使
x
e
x_e
xe与
x
g
x_g
xg同向。
之后便需要绕
x
e
x_e
xe轴旋转,如果让
z
e
z_e
ze与
z
g
z_g
zg同向,便实现了两个坐标系的旋转变换。
z
g
z_g
zg与赤道平面的夹角为
φ
\varphi
φ,那么与
z
e
z_e
ze的夹角为
9
0
∘
−
φ
90^\circ-\varphi
90∘−φ,因此绕
x
e
x_e
xe轴旋转
9
0
∘
−
φ
90^\circ-\varphi
90∘−φ即可。
这样便实现了从e系到g系的转换。
绕
z
e
z_e
ze轴旋转
λ
+
90
\lambda + 90
λ+90:
[
c
o
s
(
λ
+
9
0
∘
)
s
i
n
(
λ
+
9
0
∘
)
0
−
s
i
n
(
λ
+
9
0
∘
)
c
o
s
(
λ
+
9
0
∘
)
0
0
0
1
]
=
[
−
s
i
n
λ
c
o
s
λ
0
−
c
o
s
λ
−
s
i
n
λ
0
0
0
1
]
\begin{bmatrix} cos(\lambda+90^\circ) & sin(\lambda+90^\circ) & 0\\ -sin(\lambda+90^\circ) & cos(\lambda+90^\circ) & 0\\ 0 & 0 & 1\\ \end{bmatrix} = \begin{bmatrix} -sin\lambda & cos\lambda & 0\\ -cos\lambda & -sin\lambda & 0\\ 0 & 0 & 1\\ \end{bmatrix}
⎣⎡cos(λ+90∘)−sin(λ+90∘)0sin(λ+90∘)cos(λ+90∘)0001⎦⎤=⎣⎡−sinλ−cosλ0cosλ−sinλ0001⎦⎤
绕
x
e
x_e
xe轴旋转
90
−
φ
90-\varphi
90−φ:
[
1
0
0
0
c
o
s
(
9
0
∘
−
φ
)
s
i
n
(
9
0
∘
−
φ
)
0
−
s
i
n
(
9
0
∘
−
φ
)
c
o
s
(
9
0
∘
−
φ
)
]
=
[
1
0
0
0
s
i
n
φ
c
o
s
φ
0
−
c
o
s
φ
s
i
n
φ
]
\begin{bmatrix} 1 & 0 & 0\\ 0 & cos(90^\circ - \varphi) & sin(90^\circ - \varphi)\\ 0 & -sin(90^\circ - \varphi) & cos(90^\circ - \varphi)\\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\ 0 & sin\varphi & cos\varphi\\ 0 & -cos\varphi & sin\varphi \end{bmatrix}
⎣⎡1000cos(90∘−φ)−sin(90∘−φ)0sin(90∘−φ)cos(90∘−φ)⎦⎤=⎣⎡1000sinφ−cosφ0cosφsinφ⎦⎤
可得:
C
e
g
=
[
1
0
0
0
s
i
n
φ
c
o
s
φ
0
−
c
o
s
φ
s
i
n
φ
]
[
−
s
i
n
λ
c
o
s
λ
0
−
c
o
s
λ
−
s
i
n
λ
0
0
0
1
]
=
[
−
s
i
n
λ
c
o
s
λ
0
−
s
i
n
φ
c
o
s
λ
−
s
i
n
φ
s
i
n
λ
c
o
s
φ
c
o
s
φ
c
o
s
λ
c
o
s
φ
s
i
n
λ
s
i
n
φ
]
C_e^g = \begin{bmatrix} 1 & 0 & 0\\ 0 & sin\varphi & cos\varphi\\ 0 & -cos\varphi & sin\varphi \end{bmatrix} \begin{bmatrix} -sin\lambda & cos\lambda & 0\\ -cos\lambda & -sin\lambda & 0\\ 0 & 0 & 1\\ \end{bmatrix} = \begin{bmatrix} -sin\lambda & cos\lambda & 0 \\ -sin\varphi cos\lambda & -sin\varphi sin\lambda & cos\varphi \\ cos\varphi cos\lambda & cos\varphi sin\lambda & sin\varphi \end{bmatrix}
Ceg=⎣⎡1000sinφ−cosφ0cosφsinφ⎦⎤⎣⎡−sinλ−cosλ0cosλ−sinλ0001⎦⎤=⎣⎡−sinλ−sinφcosλcosφcosλcosλ−sinφsinλcosφsinλ0cosφsinφ⎦⎤
C
g
e
=
[
−
s
i
n
λ
−
s
i
n
φ
c
o
s
λ
c
o
s
φ
c
o
s
λ
c
o
s
λ
−
s
i
n
φ
s
i
n
λ
c
o
s
φ
s
i
n
λ
0
c
o
s
φ
s
i
n
φ
]
C_g^e = \begin{bmatrix} -sin\lambda & -sin\varphi cos\lambda & cos\varphi cos\lambda\\ cos\lambda & -sin\varphi sin\lambda & cos\varphi sin\lambda\\ 0 & cos\varphi & sin\varphi \end{bmatrix}
Cge=⎣⎡−sinλcosλ0−sinφcosλ−sinφsinλcosφcosφcosλcosφsinλsinφ⎦⎤