本次分享的文献来自最新一期(2025年3月)发表在放射影像学顶刊《Radiology》(IF=12.1)上的研究“Value of Using a Generative AI Model in Chest Radiography Reporting: A Reader Study”,在胸部 X 光检查报告中使用生成式 AI 模型的价值:一项读者研究。放射学专家Paul S. Babyn1和Scott J. Adams1对该论文做了评述。
研究概要:
这项研究探讨了领域特定的多模态生成式人工智能(AI)模型在胸部X线片报告中的临床价值,并通过一项读者研究验证了AI在提升放射科工作流程中的潜力。研究发现,AI生成的初步报告能够减少放射科医师的阅读时间,同时提高报告的一致性、质量以及对异常情况的敏感性。
研究背景:
胸部X线片是最常见的放射学检查,但准确及时的解读至关重要,因为解读偏差可能严重影响临床决策。随着影像检查量的增加,依赖放射科医师的人工解读面临可扩展性问题,造成临床流程的延误及解读错误的风险。
近年来,基于深度学习的计算机视觉模型已在胸片解读(如检测、分割任务)中取得进展。然而,多模态生成式AI不仅可以分类影像特征,还能生成详细的影像报告,从而提升报告的上下文信息和连贯性。
尽管多模态生成式AI模型在生成影像报告方面具有潜力,但关于其在实际临床环境下提升报告准确性和效率的验证研究(如读者研究)尚缺乏证据。
研究方法
研究设计:
- 研究类型:回顾性、顺序性、多读者、多病例的读者研究
- 时间范围:2023年10月至12月
- 数据来源: 2009年至2017年PadChest数据集的758例胸片
- 读者:5名放射科医师(3名胸部亚专科医师、1名乳腺影像医师、1名普通放射科医师)
- AI模型:KARA-CXR(Kakaobrain研发的领域特定多模态生成式AI模型)**
**
研究流程:
- 第一阶段:5名医师在无AI辅助的情况下独立解读胸片并撰写报告。
- 四周洗脱期后
- 第二阶段:医师使用AI生成的初步报告作为参考进行解读,并可对AI报告进行修正。
评估指标:
- 阅读时间:自动记录每位医师的胸片阅读时间
- 报告一致性:采用RADPEER评分系统评估医师报告与标准答案的符合程度(评分:1-5)
- 报告质量:两名具有20年以上经验的胸部放射科医师使用五点Likert评分量表评估报告质量
- 真实正确性(Factual correctness):从258例胸片中提取13种异常发现,并比较AI辅助前后医师报告的敏感性和特异性
统计分析:
- 广义线性混合模型: 比较两个阶段的阅读时间、一致性和质量评分
- McNemar检验: 比较AI辅助前后的敏感性和特异性,并对13种异常发现进行Bonferroni校正(显著性水平α = 0.0038)
研究结果
阅读时间:
-
AI报告显著减少医师的平均阅读时间:
-
- 无AI:34.2 ± 20.4s
- 有AI:19.8 ± 12.5s
- P < 0.001
报告一致性:
- 报告一致性评分从**5.0(IQR, 4.0–5.0)*提升至*5.0(IQR, 4.5–5.0),P <0 .001;
报告质量:
- 报告质量评分从**4.5(IQR, 4.0–5.0)*提升至*4.5(IQR, 4.5–5.0), P < 0.001;
异常检测的敏感性提升:
- 纵隔增宽:从 84.3% 提升至 90.8%(P < 0.001)
- 胸膜病变:从 77.7% 提升至 87.4%(P < 0.001)
- 肺实变: 从 56.8% 提升至 74.7%(P = 0.003)
- 肺浸润:从 28.8% 提升至 51.3% (P = 0.002)**
**
但部分结果有所下降:
- 结节检测: 敏感性反而从86.7%降至80.0%(P < 0.001)
- 研究认为这可能是由于AI模型使用了“结节”的不同术语(如“圆形不透明影”或“钙化肉芽肿”),导致标签提取模型识别困难。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。