多模态数据融合又冲上Nature!确定不来了解一下?

多模态数据融合再突破,登上Nature子刊!作者提出了全新的癌症复发预测框架,预测准确率和可信度飙升,刷新了多项SOTA!

众所周知,多模态在如今是越发的火爆了,而多模态数据融合作为其中的关键技术,自然也就成为研究的热门!且还在上升期,出创新点的机会很多。主要在于,其能够整合来自不同模态的数据,减少单一数据源可能带来的误差和不确定性,从而提高信息处理的准确性和可靠性。此外,不同模态的数据还可能受到不同的噪声和干扰,通过融合,有助于模型摒除干扰,提高鲁棒性。这些特性对于医疗诊断、自动驾驶、人机交互等都至关重要!

目前常用的融合方式有:编码器-解码器方法、注意力机制方法、图神经网络方法、生成神经网络方法等。

编码器-解码器方法

Deep encoder-decoder networks for classification of hyper spectral and LiDAR data

内容:文章是关于一种名为EndNet的深度编码器-解码器网络,它用于分类高光谱和激光雷达数据。EndNet通过一种新颖的融合策略,将多模态信息融合,并通过重建多模态输入来激活跨模态的神经元,从而提高分类性能。文章通过在两个流行的高光谱和激光雷达数据集上进行的广泛实验,证明了EndNet与其他几种最新技术基线相比,在高光谱-激光雷达分类任务中的优越性和有效性。代码将在GitHub上提供,以促进遥感领域的研究。

img

*注意力机制方法*

Multimodal Fusion with Co-Attention Networks for Fake News Detection

内容:文章提出了一种名为多模态共注意网络(MCAN)的新方法,用于检测包含文本和视觉内容的假新闻。MCAN通过模拟人类在阅读图文新闻时的行为,使用多个共注意层来深度融合文本和图像特征,从而学习跨模态特征间的相互依赖性。文章通过在两个真实世界的数据集上进行的广泛实验,证明了MCAN在检测假新闻方面优于现有的最先进方法。

img

图神经网络方法

Transforming Visual Scene Graphs to Image Captions

内容:文章研究了如何将视觉场景图(VSGs)转换成图像描述,即图像字幕生成问题。视觉场景图是一种结构化表示,包含了图像中物体及其相互关系的语义信息。文章的核心任务是探索如何利用这些场景图信息来生成详细且准确的图像描述。研究者们可能会采用深度学习技术,将场景图中的实体和关系映射到自然语言描述中,以生成流畅且信息丰富的字幕。这项任务是计算机视觉和自然语言处理交叉领域中的一个挑战,因为它要求模型同时理解图像内容和用语言准确表达这些内容。

img

生成神经网络方法

StyleFlow For Content-Fixed Image to Image Translation

内容:文章介绍了一种名为StyleFlow的新型图像到图像(I2I)翻译模型,它利用正规化流和一种新颖的风格感知归一化(SAN)模块来实现内容固定的图像翻译。StyleFlow模型支持图像引导的翻译和多模态合成,并且在保持原始图像内容或语义信息的同时,能有效地转换到目标图像的风格。文章通过多个I2I翻译基准测试对模型进行了评估,结果表明StyleFlow在强约束和正常约束的任务中比以前的方法有更好的性能。

img

其他方法

Multimodal encoder-decoder attention networks for visual question answering

内容:文章介绍了一种用于视觉问答(VQA)的新型多模态编码器-解码器注意力网络(MEDAN)。MEDAN通过多层级联的多模态编码器-解码器注意力(MEDA)层来捕获问题和图像特征之间的丰富关联,通过将问题中的关键词与图像中的重要区域相关联,实现了更准确的视觉问答。实验结果表明,MEDAN在VQA-v2基准数据集上达到了最先进的性能。使用Adam优化器时,该模型在测试集上达到了71.01%的整体准确率。此外,文章还通过大量消融研究来探讨MEDAN有效性的原因。

img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>嗯,用户现在问的是如何用神经网络来量化分析大鼠行为。之前他们问过如何学习MATLAB,现在这个问题看起来更具体,属于应用层面。首先,我需要确定用户的需求是什么。他们可能是神经科学或者生物学领域的研究者,或者是学生,想要通过神经网络处理实验数据,自动分析大鼠的行为,比如分类不同的动作,或者监测行为变化。 接下来,我得考虑用户可能的知识背景。他们可能已经有一定的MATLAB基础,但可能需要更深入的指导,尤其是在神经网络的应用部分。用户可能需要了解整个流程,从数据采集到模型部署,以及具体的实现步骤。 用户可能没有说出来的深层需求,可能是希望有一个高效的自动化分析方法,代替传统的手动观察,这样能提高研究的准确性和效率。另外,他们可能对数据预处理、模型选择、结果验证这些步骤不太熟悉,需要详细的指导。 首先,我需要回顾神经网络在行为分析中的应用,比如常用的CNN、RNN、Transformer等模型,以及它们在处理时序数据或图像数据中的优劣。然后,数据采集部分,用户可能需要了解如何获取高质量的数据,包括视频记录和传感器数据,以及标注方法。 预处理是关键,可能需要讲解视频处理技术,比如背景减除、降噪、帧差分,以及数据增强的方法。特征提取部分,传统方法如光流、HOG,和深度学习方法如自动特征提取的区别和适用场景。 模型构建方面,需要分情况讨论,如果是图像数据,用CNN;如果是时序数据,用LSTM或Transformer。同时,可能需要提到迁移学习,比如使用预训练的模型来加速训练。 训练和验证部分,需要强调数据划分、过拟合处理(如正则化、早停),以及评估指标的选择,比如准确率、混淆矩阵、ROC曲线。特别是行为分析中类别不平衡的问题,可能需要用到加权损失函数或过采样技术。 最后,部署和应用部分,实时处理可能需要模型优化,如量化、剪枝,以及MATLAB的部署工具。结果分析要结合领域知识,比如特定行为的神经机制。 还要考虑用户可能的资源限制,比如计算资源是否充足,数据量是否足够,是否需要使用迁移学习来减少数据需求。同时,可能提到MATLAB的相关工具箱,如Deep Learning Toolbox,Computer Vision Toolbox,方便用户直接应用。 可能遇到的挑战包括数据标注的耗时,模型泛化能力,实时处理的计算延迟等,需要给出解决方案,比如半自动标注、模型轻量化等。另外,伦理问题也需要提及,比如动物实验的合规性。 总结下来,回答需要结构清晰,覆盖从数据到部署的全流程,给出具体步骤、方法选择、工具推荐,以及实际应用中的注意事项,帮助用户系统性地理解和实施神经网络在大鼠行为分析中的应用。</think>利用神经网络对大鼠行为进行量化分析是神经科学和计算生物学中的热门方向,主要通过视频、传感器数据或神经电信号实现自动化行为分类与模式识别。以下是完整的技术路径和实用建议: --- ### **一、核心步骤与关键技术** #### 1. **数据采集与标注** - **数据来源**: - **视频记录**:高速摄像机拍摄大鼠活动(如跑轮、理毛、社交互动)。 - **传感器数据**:植入式/穿戴式设备记录加速度、角速度(IMU传感器)。 - **神经信号**:同步记录局部场电位(LFP)或神经元放电(spike sorting)。 - **标注方法**: - 人工标注:使用工具如 **DeepLabCut**(开源姿态估计)或 **BORIS**(行为标注软件)标记行为类别(如“静止”“探索”)。 - 半自动标注:通过预训练模型(如YOLOv5)初步标注后人工修正。 #### 2. **数据预处理** - **视频数据**: - 背景减除(如`backgroundSubtractorMOG2` in OpenCV)。 - 降采样或裁剪关键区域(如关注大鼠躯干而非全身)。 - **时序数据**: - 滤波去噪(如Butterworth滤波器消除高频干扰)。 - 标准化:$x_{\text{norm}} = \frac{x - \mu}{\sigma}$。 - **数据增强**(针对小样本): - 视频:随机旋转、添加高斯噪声。 - 传感器数据:时序平移、幅度缩放。 #### 3. **特征提取** - **传统方法**(适用于低算力场景): - 运动轨迹:速度、加速度、移动路径复杂度(Hausdorff维数)。 - 姿态特征:关节角度、身体重心变化(需结合DeepLabCut)。 - **深度学习方法**: - 直接输入原始数据(图像或时序信号),由网络自动提取特征(如CNN的卷积层)。 #### 4. **模型构建与训练** - **图像/视频分析**(推荐模型): - **3D-CNN**:处理视频片段(时空特征),如`C3D`。 - **ResNet + LSTM**:提取空间特征后建模时序依赖。 - **传感器/时序数据分析**: - **Transformer**:捕捉长距离依赖(优于传统LSTM)。 - **Temporal Convolutional Network (TCN)**:并行处理时序数据。 - **多模态融合**: - 将视频、IMU信号、神经电信号联合输入(如早期融合或晚期决策融合)。 #### 5. **训练与验证** - **损失函数**: - 分类任务:交叉熵损失($L = -\sum y_i \log \hat{y}_i$)。 - 不平衡数据:Focal Loss或对少数类样本加权。 - **评估指标**: - 准确率(Accuracy)、混淆矩阵。 - 行为分割任务:IoU(Intersection over Union)。 #### 6. **部署与应用** - **实时分析**: - 轻量化模型:MobileNetV3(图像)或TinyLSTM(时序)。 - 边缘计算:部署到Jetson Nano等嵌入式设备。 - **结果可视化**: - 用MATLAB绘制行为热图或轨迹叠加图(`heatmap`函数)。 --- ### **二、MATLAB实现示例** #### 1. **使用预训练CNN分类行为片段** ```matlab % 加载预训练模型(如ResNet-18) net = resnet18; inputSize = net.Layers(1).InputSize; % 准备数据 imds = imageDatastore('rat_videos/', 'IncludeSubfolders', true, 'LabelSource', 'foldernames'); [imdsTrain, imdsTest] = splitEachLabel(imds, 0.7, 'randomized'); % 数据增强 augmenter = imageDataAugmenter('RandRotation', [-20 20], 'RandXReflection', true); augImdsTrain = augmentedImageDatastore(inputSize(1:2), imdsTrain, 'DataAugmentation', augmenter); % 微调模型 options = trainingOptions('adam', 'MaxEpochs', 10, 'MiniBatchSize', 32); net = trainNetwork(augImdsTrain, net.Layers, options); % 评估 [YPred, probs] = classify(net, augImdsTest); accuracy = sum(YPred == imdsTest.Labels)/numel(imdsTest.Labels); ``` #### 2. **传感器信号分类(LSTM)** ```matlab % 加载加速度计数据(格式:N×3矩阵,X/Y/Z轴) data = load('rat_sensor_data.mat'); [XTrain, YTrain, XTest, YTest] = splitData(data); % 构建LSTM网络 layers = [ sequenceInputLayer(3) lstmLayer(128, 'OutputMode', 'last') fullyConnectedLayer(5) % 5种行为类别 softmaxLayer classificationLayer]; % 训练 options = trainingOptions('adam', 'SequenceLength', 'longest'); net = trainNetwork(XTrain, YTrain, layers, options); ``` --- ### **三、挑战与解决方案** 1. **数据不足**: - 使用迁移学习(如ImageNet预训练模型)。 - 生成对抗网络(GAN)合成数据(MATLAB的`ganNetwork`函数)。 2. **行为模糊性**: - 引入注意力机制(如SENet模块)聚焦关键身体部位。 3. **实时性要求**: - 模型量化(MATLAB的`dlquantizer`工具将FP32转为INT8)。 --- ### **四、资源推荐** 1. **工具包**: - **DeepLabCut**:无需编码的姿态估计(兼容MATLAB Python API调用)。 - **BORIS**:开源行为标注软件。 2. **论文**: - 《DeepBehavior: A Deep Learning Toolbox for Automated Analysis of Animal and Human Behavior》(Nature Protocols, 2020)。 --- ### **五、伦理与合规** - 动物实验需符合**3R原则**(替代、减少、优化),确保实验通过伦理审查。 - 数据隐私:若涉及实验室间数据共享,需匿名化处理。 --- 通过上述流程,可实现从“原始数据→行为标签→量化统计”的全自动化分析。如果需要具体某一步的代码(如数据预处理细节),可以进一步说明! 🐭🔬
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值