【opencv学习笔记】第八篇:输入输出XML和YAML文件

本文详细介绍了XML和YAML这两种常用的数据序列化格式,包括它们的基本概念、读写操作,并提供了使用C++的OpenCV库进行XML和YAML文件读写的示例代码。内容涵盖如何创建、写入、读取文件以及处理各种数据结构如vector和map。
摘要由CSDN通过智能技术生成

1. XML和YAML简介

XML,即eXtensible Markup Language,可扩展标识语言,它是一种元标记语言,所谓“元标记”,就是开发者可以根据自身需要定义自己的标记,比如<book>、<name>。任何满足XML命名规则的名称都可以标记。

YAML即"YAML Ain’t a Markup Language"或者"Yet Another Markup Language"。它是一种可读性高,用来表达资料序列的格式。.yml和.yaml都是YAML格式的后缀名。

XML和YAML是使用非常广泛的文件格式,可以利用XML或者YAML格式的文件存储和还原各式各样的数据结构。

2. XML和YAML的读写操作

使用方法如下:

  • 实例化一个FileStorage类的对象。有两种方式:一种是默认带参数的构造函数初始化,另一种是FileStorage::open()成员函数辅助初始化。
string filename = "I.xml";
FileStorage fs(filename, FileStorage::WRITE);//方法一
fs.open(filename, FileStorage::READ);//方法二
  • 使用流操作符<<进行文件写入操作,使用>>进行文件读取操作。
fs << "iterationNr" << 100;
int itNr;
fs["iterationNr"] >> itNr;
itNr = (int) fs["iterationNr"];

另一个例子:

Mat R = Mat_<uchar >::eye (3, 3),
T = Mat_<double>::zeros(3, 1);
fs << "R" << R; // Write cv::Mat
fs << "T" << T;
fs["R"] >> R; // Read cv::Mat
fs["T"] >> T;
  • vector(arrays) 和 maps的输入和输出

vector要注意在第一个元素前加上“[”,在最后一个元素前加上"]"。例如:

fs << "strings" << "["; // text - string sequence
fs << "image1.jpg" << "Awesomeness" << "baboon.jpg";
fs << "]"; // close sequence

对于map结构的操作使用的符号是"{“和”}",例如:

fs << "Mapping"; // text - mapping
fs << "{" << "One" << 1;
fs << "Two" << 2 << "}";
  • 使用FileStorage::release()函数写勾掉FileStorage类对象,同时关闭文件。

2.1 XML和YAML文件的读取

(1)写入示例:

#include "opencv2/opencv.hpp"  
#include <time.h>  
using namespace cv;  

int main( )  
{  
	//初始化
	FileStorage fs("test.yaml", FileStorage::WRITE);  

	//开始文件写入
	fs << "frameCount" << 5;  //第一行
	time_t rawtime; time(&rawtime);  
	fs << "calibrationDate" << asctime(localtime(&rawtime));  //第二行,记录时间
	Mat cameraMatrix = (Mat_<double>(3,3) << 1000, 0, 320, 0, 1000, 240, 0, 0, 1);  
	Mat distCoeffs = (Mat_<double>(5,1) << 0.1, 0.01, -0.001, 0, 0);  
	fs << "cameraMatrix" << cameraMatrix << "distCoeffs" << distCoeffs;  //第三行,第四行
	fs << "features" << "[";  //记录vector和map
	for( int i = 0; i < 3; i++ )  
	{  
		int x = rand() % 640;  
		int y = rand() % 480;  
		uchar lbp = rand() % 256;  

		fs << "{:" << "x" << x << "y" << y << "lbp" << "[:";  //{ }写入map, [ ]写入vector
		for( int j = 0; j < 8; j++ )  //vector写入
			fs << ((lbp >> j) & 1);  
		fs << "]" << "}";  
	}  
	fs << "]";  
	fs.release();  

	printf("\n文件读写完毕,请在工程目录下查看生成的文件~");
	getchar();

	return 0;  
}  

test.yaml格式如下:

%YAML:1.0
---
frameCount: 5
calibrationDate: "Wed Jun 23 10:06:59 2021\n"
cameraMatrix: !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [ 1000., 0., 320., 0., 1000., 240., 0., 0., 1. ]
distCoeffs: !!opencv-matrix
   rows: 5
   cols: 1
   dt: d
   data: [ 1.0000000000000001e-01, 1.0000000000000000e-02,
       -1.0000000000000000e-03, 0., 0. ]
features:
   - { x:103, y:166, lbp:[ 1, 0, 0, 1, 0, 1, 1, 0 ] }
   - { x:115, y:113, lbp:[ 1, 1, 1, 1, 1, 1, 1, 1 ] }
   - { x:586, y:12, lbp:[ 1, 0, 0, 1, 0, 1, 0, 0 ] }

如果是xml格式,则可能会看到如下内容:

<?xml version="1.0"?>
<opencv_storage>
<frameCount>5</frameCount>
<calibrationDate>"Wed Jun 23 14:32:46 2021&#x0a;"</calibrationDate>
<cameraMatrix type_id="opencv-matrix">
  <rows>3</rows>
  <cols>3</cols>
  <dt>d</dt>
  <data>
    1000. 0. 320. 0. 1000. 240. 0. 0. 1.</data></cameraMatrix>
<distCoeffs type_id="opencv-matrix">
  <rows>5</rows>
  <cols>1</cols>
  <dt>d</dt>
  <data>
    1.0000000000000001e-01 1.0000000000000000e-02
    -1.0000000000000000e-03 0. 0.</data></distCoeffs>
<features>
  <_><x>103</x>
    <y>166</y>
    <lbp>
      1 0 0 1 0 1 1 0</lbp></_>
  <_><x>115</x>
    <y>113</y>
    <lbp>
      1 1 1 1 1 1 1 1</lbp></_>
  <_><x>586</x>
    <y>12</y>
    <lbp>
      1 0 0 1 0 1 0 0</lbp></_></features>
</opencv_storage>

(3)读取示例

#include "opencv2/opencv.hpp"  
#include <time.h>  
using namespace cv;  
using namespace std;  

int main( )  
{  
	//初始化
	FileStorage fs2("test.yaml", FileStorage::READ);  

	// 第一种方法,对FileNode操作
	int frameCount = (int)fs2["frameCount"];  

	std::string date;  
	// 第二种方法,使用FileNode运算符> > 
	fs2["calibrationDate"] >> date;  

	Mat cameraMatrix2, distCoeffs2;  
	fs2["cameraMatrix"] >> cameraMatrix2;  
	fs2["distCoeffs"] >> distCoeffs2;  

	cout << "frameCount: " << frameCount << endl  
		<< "calibration date: " << date << endl  
		<< "camera matrix: " << cameraMatrix2 << endl  
		<< "distortion coeffs: " << distCoeffs2 << endl;  

	FileNode features = fs2["features"];  
	FileNodeIterator it = features.begin(), it_end = features.end();  
	int idx = 0;  
	std::vector<uchar> lbpval;  

	//使用FileNodeIterator遍历序列
	for( ; it != it_end; ++it, idx++ )  
	{  
		cout << "feature #" << idx << ": ";  
		cout << "x=" << (int)(*it)["x"] << ", y=" << (int)(*it)["y"] << ", lbp: (";  //读取map
		// 我们也可以使用使用filenode > > std::vector操作符很容易的读数值阵列
		(*it)["lbp"] >> lbpval;  
		for( int i = 0; i < (int)lbpval.size(); i++ )  //读取vector
			cout << " " << (int)lbpval[i];  
		cout << ")" << endl;  
	}  
	fs2.release();  

	//程序结束,输出一些帮助文字
	printf("\n文件读取完毕,请输入任意键结束程序~");
	getchar();

	return 0;  
}  

输出:

frameCount: 5
calibration date: Wed Jun 23 10:06:59 2021

camera matrix: [1000, 0, 320;
 0, 1000, 240;
 0, 0, 1]
distortion coeffs: [0.1;
 0.01;
 -0.001;
 0;
 0]
feature #0: x=103, y=166, lbp: ( 1 0 0 1 0 1 1 0)
feature #1: x=115, y=113, lbp: ( 1 1 1 1 1 1 1 1)
feature #2: x=586, y=12, lbp: ( 1 0 0 1 0 1 0 0)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非晚非晚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值