YOLO11 - 火灾与烟雾检测
本项目聚焦于使用最新的YOLOv12模型在视频流中进行实时火灾和烟雾的检测与跟踪。本仓库包含实现和演示一个强大火灾与烟雾检测系统所需的所有代码和资源,展示了YOLOv10模型的强大功能。
演示视频
为了查看模型的实际效果,您可以通过Hugging Face的演示平台测试该模型。
数据集
本项目使用的数据集包含含有火灾和烟雾的图像,主要从 Roboflow 收集。为了确保数据集的质量和可靠性,我们使用 cleanvision 库进行了详尽的数据清理过程。
数据清理过程
数据清理过程在一个 Jupyter notebook 中进行了详细记录。您可以在以下链接找到包含所有代码和结果的笔记本:
数据下载
您可以从以下链接下载本项目使用的数据集:[下载数据集](Download Dataset)。
数据集统计
- 清理后的图像总数:123,015 张
- 标签分布:
训练与验证指标
为了进一步评估模型的性能,我们使用了 精度(Precision)、召回率(Recall) 和 50% IoU下的平均精度(mAP50) 来衡量模型在检测和分类火灾与烟雾方面的准确性和可靠性。
-
精度(Precision):是真阳性检测数与所有正检测数(包括真阳性和假阳性)的比值。它表示模型预测的火灾或烟雾实例中,有多少是正确的。
-
召回率(Recall):是真阳性检测数与所有实际正实例的比值。它展示了模型能捕捉到所有火灾和烟雾实例的能力。
-
mAP50(50% IoU下的平均精度):在50%交并比(IoU)下的平均精度,综合了精度和召回率,提供一个单一的得分来评估模型的整体性能。
总结
本项目展示了如何使用YOLOv10模型实现火灾和烟雾的实时检测与跟踪。通过清洗数据集并进行精确的模型训练与评估,我们能够高效地识别火灾和烟雾的存在,为自动监控、灾难预警等系统提供支持。