YOLOv12 手势识别训练全攻略

YOLOv12 手势识别训练全攻略 🚀✋

一、项目背景:让AI看懂你的手势

手势识别是人机交互领域的重要技术,从智能家居控制到AR/VR应用都大有可为。本教程将手把手教你用YOLOv12训练一个中文环境下的手势识别模型,支持10种手势分类

二、环境准备:搭好炼丹炉

在这里插入图片描述

1. 硬件要求

  • 显卡:至少RTX 3060 (显存12GB以上)
  • 内存:32GB推荐
  • 存储:SSD硬盘,至少500GB空间

2. 软件环境

# 创建conda环境
conda create -n yolov12 python=3.9
conda activate yolov12

# 安装依赖
pip install torch==2.1.0 torchvision==0.16.0
pip install ultralytics==12.0.0  # YOLOv12官方库
pip install opencv-python pillow pandas

三、数据集准备:特色手势库

1. 数据集结构

datasets/
├── hand_gestures/
│   ├── images/
│   │   ├── train/
│   │   └── val/
│   └── labels/
│       ├── train/
│       └── val/
└── chinese_gestures.yaml  # 数据集配置文件
names: ['0', '1', '10', '11', '12', '13', '2', '3', '4', '5', '6', '7', '8', '9']

2. 数据标注规范

  • 使用LabelImg标注,保存为YOLO格式
  • 每个手势对应一个类别ID(0-999)
  • 特殊中文手势示例:
    • 在这里插入图片描述

3. 数据增强策略

# 在配置文件中添加
augmentation:
  hsv_h: 0.015  # 色相变换
  hsv_s: 0.7    # 饱和度变换
  hsv_v: 0.4    # 明度变换
  degrees: 15   # 旋转角度
  translate: 0.1  # 平移
  scale: 0.5    # 缩放
  shear: 0.1    # 剪切

四、模型训练:开始炼丹

1. 配置文件修改

# chinese_gestures.yaml
path: ./datasets/hand_gestures
train: images/train
val: images/val

nc: 1000  # 1000个手势类别
names: ['手势0', '手势1', ..., '666', ..., '比心']  # 中文标签

在这里插入图片描述

2. 启动训练

from ultralytics import YOLO

# 加载预训练模型
model = YOLO('yolov12n.pt')  # 根据显存选择n/s/m/l/x版本

# 开始训练!
results = model.train(
    data='datasets/chinese_gestures.yaml',
    epochs=300,
    batch=32,  # 根据显存调整
    imgsz=640,
    device=0,  # 使用GPU 0
    name='yolov12_gestures'
)

3. 训练技巧

  • 渐进式训练:先小尺寸(320x320)训练50轮,再切大尺寸(640x640)
  • 冻结骨干网络:前50轮冻结特征提取层
model.train(..., freeze=[0, 1, 2, 3])  # 冻结前4层

五、模型评估:看看AI学得怎么样

1. 指标查看

# 训练完成后自动生成results.csv
import pandas as pd
metrics = pd.read_csv('runs/train/yolov12_gestures/results.csv')
print(metrics[['epoch', 'metrics/precision', 'metrics/recall']].tail())

2. 验证集测试

model.val(conf=0.5, iou=0.6)  # 调整置信度和IoU阈值

3. 常见问题解决

  • 过拟合:增加数据增强/添加Dropout层
  • 显存不足:减小batch_size/使用更小模型
  • 类别不平衡:使用focal loss

六、模型部署:让AI真正用起来

1. 导出为ONNX格式

model.export(format='onnx', dynamic=True)  # 支持动态输入

2. Python推理示例

from ultralytics import YOLO

model = YOLO('yolov12_gestures.pt')
results = model('test.jpg')

# 中文标签显示
for box in results[0].boxes:
    cls_id = int(box.cls)
    conf = float(box.conf)
    print(f"检测到手势: {model.names[cls_id]}, 置信度: {conf:.2f}")





![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/a73f861a92dd4550b858427834c774e3.png)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值