基于YOLOv11与LSTM的驾驶员疲劳检测系统

基于YOLOv11与LSTM的驾驶员疲劳检测系统

项目概述

本项目实现了一个智能驾驶员疲劳状态检测系统,结合了YOLOv11目标检测模型和LSTM时序建模能力。系统能够处理视频或图片序列输入,通过多阶段分析实现疲劳状态的精准识别与可视化展示。

技术架构

在这里插入图片描述

核心组件

  1. YOLOv11目标检测:实时检测视频帧中的驾驶员面部特征
  2. LSTM时序建模:分析驾驶员状态的时序变化模式
  3. 多级分类系统:将检测结果映射为可理解的疲劳等级(清醒/轻度疲劳/重度疲劳)

数据处理流程

  1. 目标检测 → 2. 特征编码(one-hot) → 3. 时序建模 → 4. 疲劳分类 → 5. 可视化输出

数据集

在这里插入图片描述

  • 来源:drow数据集
  • 授权:Public Domain (公共领域)
  • 存放要求:需按data/README.dataset.txt说明放置数据集文件

开发环境

基础要求

  • Python 3.13.2

关键依赖

# PyTorch (CUDA 11.8版本)
pip install torch==2.2.0+cu118 torchvision==0.17.0+cu118 --index-url https://download.pytorch.org/whl/cu118

# 其他依赖
pip install -r requirements.txt

使用指南

1. 模型训练

  • YOLO训练
    python yolo_train.py
    
  • YOLO测试
    python yolo_test.py
    

2. 特征提取

python features_get.py

3. LSTM模型训练

python data_sorted.py  # 数据时序整理
python lstm_train.py  # LSTM模型训练

4. 推理与可视化

  • 基础推理
    python predicate.py
    
  • 增强推理(含时序分析)
    python predict_fatigue_sequence.py
    

在这里插入图片描述

输出说明

系统将生成:

  1. 命令行文本输出(疲劳等级预测结果)
  2. 带标注的MP4视频文件(可视化检测结果)

疲劳等级映射

详见predicate.py中的fatigue_level_map,实现检测类别到疲劳等级的转换逻辑。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值