指数三角优化算法(Exponential Trigonometric Optimization Algorithm,ETOA)概述
指数三角优化算法是 2024 年新提出的优化算法,发表于中科院一区 TOP 期刊《Expert Systems with Applications》,它模拟了自然生态系统中的生物进化和协作行为,通过指数和三角函数的组合来实现高效的搜索和优化。
核心原理
ETOA 算法的核心在于其独特的位置更新机制,该机制结合了指数函数和三角函数的特性,使算法在搜索空间中具有良好的探索和开发能力。
- 探索阶段:在算法初期,利用指数函数的快速增长特性,使个体能够在较大范围内进行搜索,从而全面探索解空间,发现潜在的最优区域。指数函数的形式通常可以影响个体在搜索空间中的跳跃幅度,帮助算法快速跨越不同的区域。
- 开发阶段:随着迭代的进行,三角函数的周期性和波动性被用于在已发现的潜在最优区域进行精细搜索。三角函数的周期性可以让个体在局部区域内进行反复搜索,以确定该区域内的最优解。
算法流程
- 初始化种群:在解空间内随机生成一定数量的个体,每个个体代表一个可能的解。这些个体的位置由其对应的决策变量值确定。
- 适应度评估:根据具体的优化问题,定义适应度函数,并计算每个个体的适应度值。适应度值反映了个体的优劣程度。
- 位置更新:依据指数函数和三角函数的组合规则更新每个个体的位置。具体更新公式会综合考虑当前个体的位置、全局最优个体的位置以