ROS小车研究笔记3/18/2023:SLAM建图系统架构

文章介绍了ROS环境下小车的TF树结构,包括base_link、base_footprint和odom_combined等坐标系。gmapping节点利用激光雷达、里程计和imu数据进行SLAM建图,发布地图信息供rviz可视化。wheeltec_robot节点负责小车控制,发布里程计和imu数据,并响应速度指令。

小车TF树
在这里插入图片描述

1 base_link:
base_link代表了小车车体坐标,其子坐标系定义了各个车轮相对于车体的位置。

2 base_footprint:
base_footprint集合了小车车体和各传感器的坐标。其子坐标系定义了小车摄像机,雷达,陀螺仪,和车体的相对位置。

3 odom_combined
odom_combined使用卡尔曼滤波将里程计和imu的信息结合得到了更精准的小车坐标信息

4 map
地图原点坐标系。robot_pose_ekf发布地图原点和小车的坐标系变换

建图节点
在这里插入图片描述

1 gmapping节点slam_gmapping
gmapping算法实现需要输入激光雷达深度信息,里程计信息,和imu信息。gmapping发布栅格地图信息

1 深度信息:由激光雷达节点发布的/scan话题
2 里程计信息:gmapping没有直接订阅里程计话题,而是依靠小车和地图坐标系的tf变换得到小车路程
3 imu信息:订阅经过卡尔曼滤波节点robot_pose_ekf处理过的imu信息/odom_combined

gmapping节点发布消息/map由rviz定义以实现地图可视化

gmapping的参数文件为algorithm_gmapping.launch。在该文件里可以配置和算法有关参数

2 wheeltec_robot

wheeltec_robot节点为小车控制节点,其发布里程计和imu消息,并根据传入的速度控制指令来控制下位机电机

1 发布话题:
	/PowerVoltage:电池电量信息
	/imu:imu信息
	/odom:里程计信息

2 订阅话题:
	/cmd_vel:速度控制指令,节点会根据指令向下位机进行串口通信
<think>好的,我现在需要帮用户解决如何使用STM32和ROS实现小车通过GMapping进行地的问题。首先,用户提到了STM32和ROS,所以我得考虑这两个部分如何协同工作。用户可能已经有了一些硬件基础,比如STM32作为底层控制器,ROS作为上层系统,但需要具体的配置和实现步骤。 首先,我应该回顾一下用户提供的引用内容。引用[1]是关于ROS自主导航小车的项目实践,里面有基础教程链接,可能涉及机器人平台设计,这应该是整体结构的基础。引用[2]提到基于STM32和ROS的差速机器人底层源码,包括STM32如何接收传感器数据、执行控制指令,并与ROS通信,这部分对硬件和底层代码很重要。引用[3]讨论了SLAM时的定位漂移问题,这可能与传感器校准和算法配置有关,需要特别注意。 接下来,用户的需求是使用GMapping进行,所以需要确保ROS环境中的GMapping包正确安装和配置。GMapping依赖于激光雷达数据、里程计和TF变换,因此必须确保这些数据能够正确从STM32传送到ROS。 首先,硬件部分。STM32需要负责电机控制、编码器读取、IMU数据获取,以及可能的超声波或红外传感器。这些数据需要通过串口或者USB转串口发送到运行ROS的上位机(比如树莓派或笔记本电脑)。可能需要使用ROS的serial包或者自定义串口协议来传输数据。 然后是ROS端的配置。需要创ROS包,编写节点来订阅STM32发布的传感器数据,并将其转换成ROS的标准消息格式,比如Odometry消息和LaserScan消息。同时,必须正确设置TF变换,确保base_link到odom和base_link到laser的坐标变换正确,否则GMapping无法正确融合数据。 接下来是GMapping的启动和参数调整。需要配置GMapping参数文件,调整激光雷达的参数、更新频率、地分辨率等。如果参数设置不当,可能导致不准确或定位漂移,如引用[3]提到的定位漂移问题,可能需要检查里程计的精度和传感器的时间同步。 此外,STM32和ROS之间的通信协议需要稳定可靠。数据包的解析和封装必须正确,避免数据丢失或解析错误。可能需要使用校验和或者重传机制来确保数据的完整性。同时,波特率的设置要足够高,以处理实时数据流。 测试和调试阶段,需要逐步验证每个部分。先确保STM32能够正确发布里程计和IMU数据,再验证激光雷达数据是否正确传输到ROS,接着检查TF树是否正确,最后运行GMapping并观察生成的地是否有漂移或畸变。如果出现问题,可能需要检查传感器校准、时间戳同步,或者调整GMapping参数如粒子数、扫描匹配参数等。 用户可能需要具体的步骤指导,比如如何安装ROS的serial包,如何编写STM32的通信代码,如何配置launch文件启动GMapping,以及常见问题的解决方法,比如地不更新、定位漂移等。同时,引用[3]提到的定位漂移可能由里程计误差累积导致,议融合IMU数据或使用扩展卡尔曼滤波器来优化里程计数据。 最后,生成的相关问题需要考虑用户可能的后续疑问,比如如何优化效果、如何处理通信中的延迟或丢包、如何集成导航功能等,这些都需要在相关问题中列出,帮助用户进一步探索。</think>### STM32与ROS小车GMapping实现步骤 #### 一、硬件架构设计 1. **STM32控制器**:负责电机驱动、编码器数据采集、IMU数据处理,并通过串口/UART与ROS上位机通信[^2] 2. **传感器配置**: - 激光雷达(如RPLIDAR A1) - 编码器(电机转速测量) - IMU(MPU6050/9250) - 超声波传感器(避障) 3. **通信接口**:USB转TTL模块实现STM32与ROS主机的串行通信 #### 二、STM32端开发 ```c // 示例数据发送协议 typedef struct { uint16_t left_encoder; uint16_t right_encoder; float imu_yaw; } __attribute__((packed)) OdomData; void USART_SendData(USART_TypeDef* USARTx, const OdomData* data) { uint8_t *p = (uint8_t*)data; for(int i=0; i<sizeof(OdomData); i++) { USART_SendData(USARTx, p[i]); while(USART_GetFlagStatus(USARTx, USART_FLAG_TXE) == RESET); } } ``` #### 三、ROS端配置 1. **环境搭**: ```bash sudo apt-get install ros-$ROS_DISTRO-slam-gmapping sudo apt-get install ros-$ROS_DISTRO-serial ``` 2. **创ROS包**: ```bash catkin_create_pkg stm32_bridge roscpp rospy std_msgs sensor_msgs tf ``` 3. **串口通信节点**(stm32_bridge.cpp): ```cpp #include <ros/ros.h> #include <serial/serial.h> serial::Serial ser; void callback(const ros::TimerEvent&) { if(ser.available()) { std::string data = ser.read(ser.available()); // 解析数据并发布odom话题 } } int main(int argc, char** argv){ ros::init(argc, argv, "stm32_bridge"); ros::NodeHandle nh; try { ser.setPort("/dev/ttyUSB0"); ser.setBaudrate(115200); serial::Timeout to = serial::Timeout::simpleTimeout(1000); ser.setTimeout(to); ser.open(); } catch (serial::IOException& e) { ROS_ERROR_STREAM("Unable to open port"); return -1; } ros::Timer timer = nh.createTimer(ros::Duration(0.01), callback); ros::spin(); } ``` #### 四、TF树配置 ```xml <!-- launch文件片段 --> <node pkg="tf" type="static_transform_publisher" name="base_to_laser" args="0.15 0 0.1 0 0 0 base_link laser 100"/> <node pkg="tf" type="static_transform_publisher" name="base_to_imu" args="0 0 0.05 0 0 0 base_link imu 100"/> ``` #### 五、GMapping启动配置 ```xml <launch> <node pkg="gmapping" type="slam_gmapping" name="slam_gmapping"> <param name="delta" value="0.05"/> <param name="xmin" value="-10"/> <param name="ymin" value="-10"/> <param name="xmax" value="10"/> <param name="ymax" value="10"/> <param name="maxUrange" value="6.0"/> <remap from="scan" to="/laser_scan"/> </node> </launch> ``` #### 六、关键问题解决 1. **定位漂移处理**: - 使用IMU数据补偿里程计误差[^3] - 配置合适的粒子数量(30-50) - 确保激光雷达与底盘的TF变换准确 2. **通信优化**: - 使用CRC校验保证数据完整性 - 设置合理的通信频率(议50-100Hz) - 采用二进制协议替代字符串传输
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值