从正切公式到三角代换

本文探讨了三角函数的基本恒等式,如和角公式、差角公式和正切的和角公式,通过详细推导展示了如何将这些公式应用于求解复杂角度问题。关键概念包括sin(A+B)、cos(A+B)和tan(A+B)的组合形式,以及它们在简化计算和深入理解三角学中的重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

s i n ( A + B ) = s i n A c o s B + c o s A s i n B c o s ( A + B ) = c o s A c o s B − s i n A s i n B t a n ( A + B ) = s i n ( A + B ) c o s ( A + B ) = t a n A + t a n B 1 − t a n A t a n B t a n ( θ ) = s i n ( θ ) c o s ( θ ) = t a n θ 2 + t a n θ 2 1 − t a n 2 θ 2 = 2 t k 1 − t 2 k ( 2 t k ) 2 + ( 1 − t 2 k ) 2 = 1 解 得 k = 1 + t 2 则 s i n θ = 2 t 1 + t 2 , c o s θ = 1 − t 2 1 + t 2 sin(A+B)=sinAcosB+cosAsinB\\ cos(A+B)=cosAcosB-sinAsinB\\ tan(A+B)=\frac{sin(A+B)}{cos(A+B)}=\frac{tanA+tanB}{1-tanAtanB}\\ tan(θ)=\frac{sin(θ)}{cos(θ)}=\frac{tan\frac{θ}{2}+tan\frac{θ}{2}}{1-tan^2\frac{θ}{2}}=\frac{\frac{2t}{k}}{\frac{1-t^2}{k}} \\ (\frac{2t}{k})^2+({\frac{1-t^2}{k}})^2=1\\ 解得k=1+t^2\\则sinθ=\frac{2t}{1+t^2},cosθ=\frac{1-t^2}{1+t^2} sin(A+B)=sinAcosB+cosAsinBcos(A+B)=cosAcosBsinAsinBtan(A+B)=cos(A+B)sin(A+B)=1tanAtanBtanA+tanBtan(θ)=cos(θ)sin(θ)=1tan22θtan2θ+tan2θ=k1t2k2t(k2t)2+(k1t2)2=1k=1+t2sinθ=1+t22t,cosθ=1+t21t2
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值