s
i
n
(
A
+
B
)
=
s
i
n
A
c
o
s
B
+
c
o
s
A
s
i
n
B
c
o
s
(
A
+
B
)
=
c
o
s
A
c
o
s
B
−
s
i
n
A
s
i
n
B
t
a
n
(
A
+
B
)
=
s
i
n
(
A
+
B
)
c
o
s
(
A
+
B
)
=
t
a
n
A
+
t
a
n
B
1
−
t
a
n
A
t
a
n
B
t
a
n
(
θ
)
=
s
i
n
(
θ
)
c
o
s
(
θ
)
=
t
a
n
θ
2
+
t
a
n
θ
2
1
−
t
a
n
2
θ
2
=
2
t
k
1
−
t
2
k
(
2
t
k
)
2
+
(
1
−
t
2
k
)
2
=
1
解
得
k
=
1
+
t
2
则
s
i
n
θ
=
2
t
1
+
t
2
,
c
o
s
θ
=
1
−
t
2
1
+
t
2
sin(A+B)=sinAcosB+cosAsinB\\ cos(A+B)=cosAcosB-sinAsinB\\ tan(A+B)=\frac{sin(A+B)}{cos(A+B)}=\frac{tanA+tanB}{1-tanAtanB}\\ tan(θ)=\frac{sin(θ)}{cos(θ)}=\frac{tan\frac{θ}{2}+tan\frac{θ}{2}}{1-tan^2\frac{θ}{2}}=\frac{\frac{2t}{k}}{\frac{1-t^2}{k}} \\ (\frac{2t}{k})^2+({\frac{1-t^2}{k}})^2=1\\ 解得k=1+t^2\\则sinθ=\frac{2t}{1+t^2},cosθ=\frac{1-t^2}{1+t^2}
sin(A+B)=sinAcosB+cosAsinBcos(A+B)=cosAcosB−sinAsinBtan(A+B)=cos(A+B)sin(A+B)=1−tanAtanBtanA+tanBtan(θ)=cos(θ)sin(θ)=1−tan22θtan2θ+tan2θ=k1−t2k2t(k2t)2+(k1−t2)2=1解得k=1+t2则sinθ=1+t22t,cosθ=1+t21−t2
从正切公式到三角代换
最新推荐文章于 2025-03-13 18:36:30 发布