线性代数的计算中往往乘法不满足交换律
满足交换律的运算-行列式(determinant)与迹(trace)
t
r
(
A
T
)
=
t
r
(
A
)
t
r
(
A
+
B
)
=
t
r
(
A
)
+
t
r
(
B
)
t
r
(
A
B
)
=
t
r
(
B
A
)
(
A
B
为
n
×
n
,
B
A
为
m
×
m
)
tr(A^T)=tr(A)\\ tr(A+B)=tr(A)+tr(B)\\ tr(AB)=tr(BA)(AB为n×n,BA为m×m)
tr(AT)=tr(A)tr(A+B)=tr(A)+tr(B)tr(AB)=tr(BA)(AB为n×n,BA为m×m)
d
e
t
(
A
B
)
=
d
e
t
(
A
)
∗
d
e
t
(
B
)
=
d
e
t
(
B
A
)
det(AB)=det(A)*det(B)=det(BA)
det(AB)=det(A)∗det(B)=det(BA)
行列式乘法可交换的初等变换证明:
(
E
B
0
E
)
为
列
初
等
便
换
矩
阵
(
A
A
B
−
E
0
)
=
(
A
O
−
E
B
)
(
E
B
0
E
)
∣
A
O
−
E
B
∣
=
∣
A
∣
∣
B
∣
∣
A
A
B
−
E
O
∣
=
(
−
1
)
n
2
∣
−
E
∣
∣
A
B
∣
=
∣
A
B
∣
\left( \begin{array} { l l } { E } & { B } \\ { 0} & { E} \end{array}\right)为列初等便换矩阵\\ \left( \begin{array} { l l } { A } & { AB } \\ { -E } & { 0} \end{array}\right)= \left( \begin{array} { l l } { A } & { O } \\ { -E } & {B} \end{array}\right) \left( \begin{array} { l l } { E } & { B } \\ { 0} & { E} \end{array}\right)\\ \left| \begin{array} { l l } { A } & { O } \\ { -E } & { B} \end{array}\right|=|A||B|\\ \left| \begin{array} { l l } { A } & {AB}\\{ -E } & { O } \\ \end{array}\right|=(-1)^{n^2}|-E||AB|=|AB|\\
(E0BE)为列初等便换矩阵(A−EAB0)=(A−EOB)(E0BE)∣∣∣∣A−EOB∣∣∣∣=∣A∣∣B∣∣∣∣∣A−EABO∣∣∣∣=(−1)n2∣−E∣∣AB∣=∣AB∣
线性代数中满足乘法交换律的运算-行列式与迹
最新推荐文章于 2024-08-23 23:27:22 发布