线性代数中满足乘法交换律的运算-行列式与迹

线性代数的计算中往往乘法不满足交换律
满足交换律的运算-行列式(determinant)与迹(trace)
t r ( A T ) = t r ( A ) t r ( A + B ) = t r ( A ) + t r ( B ) t r ( A B ) = t r ( B A ) ( A B 为 n × n , B A 为 m × m ) tr(A^T)=tr(A)\\ tr(A+B)=tr(A)+tr(B)\\ tr(AB)=tr(BA)(AB为n×n,BA为m×m) tr(AT)=tr(A)tr(A+B)=tr(A)+tr(B)tr(AB)=tr(BA)(ABn×n,BAm×m)
d e t ( A B ) = d e t ( A ) ∗ d e t ( B ) = d e t ( B A ) det(AB)=det(A)*det(B)=det(BA) det(AB)=det(A)det(B)=det(BA)
行列式乘法可交换的初等变换证明:
( E B 0 E ) 为 列 初 等 便 换 矩 阵 ( A A B − E 0 ) = ( A O − E B ) ( E B 0 E ) ∣ A O − E B ∣ = ∣ A ∣ ∣ B ∣ ∣ A A B − E O ∣ = ( − 1 ) n 2 ∣ − E ∣ ∣ A B ∣ = ∣ A B ∣ \left( \begin{array} { l l } { E } & { B } \\ { 0} & { E} \end{array}\right)为列初等便换矩阵\\ \left( \begin{array} { l l } { A } & { AB } \\ { -E } & { 0} \end{array}\right)= \left( \begin{array} { l l } { A } & { O } \\ { -E } & {B} \end{array}\right) \left( \begin{array} { l l } { E } & { B } \\ { 0} & { E} \end{array}\right)\\ \left| \begin{array} { l l } { A } & { O } \\ { -E } & { B} \end{array}\right|=|A||B|\\ \left| \begin{array} { l l } { A } & {AB}\\{ -E } & { O } \\ \end{array}\right|=(-1)^{n^2}|-E||AB|=|AB|\\ (E0BE)便(AEAB0)=(AEOB)(E0BE)AEOB=ABAEABO=(1)n2EAB=AB

矩阵的初等变换与"打洞"技巧

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值