假设检验

假设检验

假 设 检 验 的 基 本 思 想 是 “ 小 概 率 事 件 ” 原 理 , 其 统 计 推 断 方 法 是 带 有 某 种 概 率 性 质 的 反 证 法 。 小 概 率 思 想 是 指 小 概 率 事 件 在 一 次 试 验 中 基 本 上 不 会 发 生 。 假设检验的基本思想是“小概率事件”原理,\\其统计推断方法是带有某种概率性质的反证法。\\ 小概率思想是指小概率事件在一次试验中基本上不会发生。

一维正太分布的均值与方差(分布)

大类条件分布范围
均 值 μ 0 均值μ_0 μ0 σ 已 知 σ已知 σ ∑ x i n − μ 0 σ / n \frac{ \frac{\sum x_i}{n} -μ_0}{σ/ \sqrt{n}} σ/n nxiμ0N(0,1)
均 值 μ 0 均值μ_0 μ0 σ 未 知 σ未知 σ ∑ x i n − μ 0 S / n \frac{ \frac{\sum x_i}{n} -μ_0}{S/ \sqrt{n}} S/n nxiμ0t(n-1)
方 差 σ 2 方差σ^2 σ2 μ 未 知 μ未知 μ ( n − 1 ) S 2 σ 2 \frac{(n-1)S^2}{σ^2} σ2(n1)S2 χ 2 ( n − 1 ) χ^2(n-1) χ2n1

二维正太分布的均值与方差(分布)

大类条件分布范围
均 值 μ 1 , μ 2 均值μ_1,μ_2 μ1,μ2 σ 1 , σ 2 已 知 σ_1,σ_2已知 σ1,σ2 ∑ x 1 i n 1 − ∑ x 2 i n 2 σ 1 n 1 + σ 2 n 2 \frac{ \frac{\sum x1_i}{n1} -\frac{\sum x2_i}{n2}}{ \sqrt{ \frac{ σ_1}{n1} +\frac{ σ_2}{n2} }} n1σ1+n2σ2 n1x1in2x2iN(0,1)
均 值 μ 1 , μ 2 均值μ_1,μ_2 μ1,μ2 σ 1 , σ 2 已 知 σ_1,σ_2已知 σ1,σ2 ∑ x 1 i n 1 − ∑ x 2 i n 2 σ 1 n 1 + σ 2 n 2 \frac{ \frac{\sum x1_i}{n1} -\frac{\sum x2_i}{n2}}{ \sqrt{ \frac{ σ_1}{n1} +\frac{ σ_2}{n2} }} n1σ1+n2σ2 n1x1in2x2it(n+m-2)
方 差 σ 2 方差σ^2 σ2 μ 未 知 μ未知 μ S 1 2 S 2 2 \frac{S1^2}{S2^2} S22S12 F ( n − 1 , m − 1 ) F(n-1,m-1) Fn1m1

例 : 由 经 验 知 某 零 件 的 重 量 X   N ( μ , o 2 ) , μ = 15 , o = 0.05 ; 技 术 革 新 后 , 抽 出 6 个 零 件 , 测 得 重 量 为 ( 单 位 : 克 ) 14.715.114.815.015.214.6 , 已 知 方 差 不 变 , 试 统 计 推 断 , 平 均 重 量 是 否 仍 为 15 克 ? ( a = 0.05 ) 例:由经验知某零件的重量X~N (μ, o2) ,μ=15,\\ o=0.05;技术革新后,抽出6个零件,测得重量为\\ (单位:克) 14.7 15.1 14.8 15.0 15.2 14.6, 已\\ 知方差不变,试统计推断,平均重量是否仍为15克?(a=0.05 ) :X N(μ,o2)μ=15,o=0.05;6(:)14.715.114.815.015.214.6,15?(a=0.05)

解 : 由 题 意 可 知 : 零 件 重 量 X   N ( μ , o 2 ) , 且 技 术 革 新 前 后 的 方 差 不 变 σ 2 = 0.0 5 2 , 要 求 对 均 值 进 行 检 验 , 采 用 U 检 验 法 。 假 设 H 0 : μ = 15 ; H 1 : μ ≠ 15 构 造 U 统 计 量 , 得 U 的 0.05 双 侧 分 位 数 为 U 0.025 = + / − 1.96 而 样 本 均 值 为 x = 14.9 故 U 统 计 量 的 观 测 值 为 X ˉ − μ σ n = 1 ˉ 4.9 − 15 0.05 6 = − 4.9 观 测 值 落 在 拒 绝 域 内 所 以 拒 绝 原 假 设 。 解:由题意可知:零件重量X~N (μ, o2) ,且技术革新前后的方差不变σ^2=0.05^2,\\ 要求对均值进行检验,采用U检验法。\\ 假设H_0: μ=15;H_1: μ≠15\\ 构造U统计量,得U的0.05双侧分位数为 U_{0.025}= +/-1.96\\ 而样本均值为x =14.9\\ 故U统计量的观测值为 \frac{\bar X-μ}{\frac{σ}{\sqrt{n}}} =\frac{\bar 14.9-15}{\frac{0.05}{\sqrt{6}}} =-4.9 观测值落在拒绝域内 所以拒绝原假设。 ::X N(μ,o2)σ2=0.052,UH0:μ=15;H1:μ=15UU0.05U0.025=+/1.96x=14.9Un σXˉμ=6 0.051ˉ4.915=4.9


对 普 通 正 态 总 体 的 参 数 μ 的 区 间 估 计 X ˉ − μ σ n   ∼ N ( 0 , 1 ) 总 体 方 差 已 知 , 非 标 准 正 态 化 为 标 准 正 态 ( 由 中 心 极 限 定 理 , 当 n 足 够 大 , 也 可 以 把 独 立 同 分 布 的 随 机 变 量 之 和 当 作 正 态 变 量 ) X ˉ − μ s n   ∼ t ( n − 1 ) 总 体 方 差 w e i 知 对普通正态总体的参数μ的区间估计\\ \frac{\bar X-μ}{\frac{σ}{\sqrt{n}}} \ \sim N(0,1) \\总体方差已知,非标准正态化为标准正态(由中心极限定理,当n足够大,\\也可以把独立同分布的随机变量之和当作正态变量)\\ \frac{\bar X-μ}{\frac{s}{\sqrt{n}}} \ \sim t(n-1) \\总体方差wei知\\ μn σXˉμ N(0,1)(,n)n sXˉμ t(n1)wei
1 σ 2 ∑ i = 1 n ( X i − μ ) 2   ∼ χ 2 ( n ) \frac{1}{σ^2}\sum_{i=1}^{n}(X_i-μ)^2 \ \sim χ^2(n) σ21i=1n(Xiμ)2 χ2(n)
n − 1 σ 2 S 2   ∼ χ 2 ( n − 1 ) \frac{n-1}{σ^2}S^2 \ \sim χ^2(n-1) σ2n1S2 χ2(n1)

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:深蓝海洋 设计师:CSDN官方博客 返回首页

打赏作者

FakeOccupational

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值