隐函数求微分

本文探讨了两种微分法则——链式求导法则和直接微分法在解决方程如x^2+y^2=1时的应用。通过实例展示了如何利用这两种方法求解dy/dx,揭示了微分在解析几何和微积分中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链式求导法则(隐函数求导法则): 将方程两边都对x求导,有y的地方,先当成y的函数,对y求导,然后再将y对x求导。最后解出dy/dx,dy=y’dx。

直接微分(因为具有形式的不变性,所以可以不考虑变量之间的内在关系):将x、y看成等同地位,谁也不是谁的函数,方程两边微分,解出dy即可。

x 2 + y 2 = 1 直接微分 : 2 x d x + 2 y d y = 0 ⇒ d y = − x y d x 链式法则: 2 x + 2 y y ′ = 0 ⇒ y ′ = − x y , d y = y ′ d x x^2+y^2=1\\ 直接微分:2xdx+2ydy=0 \Rightarrow dy=\frac{-x}{y}dx\\ 链式法则:2x+2yy'=0 \Rightarrow y'=\frac{-x}{y},dy=y'dx\\ \\ x2+y2=1直接微分:2xdx+2ydy=0dy=yxdx链式法则:2x+2yy=0y=yx,dy=ydx

一阶微分的不变性-反函数的高阶导数

MATLAB可以用于解隐式微分方程,这类问题通常比显式的常微分方程更复杂。隐函数形式的微分方程一般表示为 \( F(t,y,\dot{y}) = 0 \),其中无法直接将导数项单独分离出来。 ### MATLAB 解决方案概述 1. **选择适当的工具箱** 使用 `ode15i` 函数是解决完全隐式微分方程的主要方法之一。此功能专为此类问题设计。 2. **定义初始条件** 需提供一致的初值条件 (consistent initial conditions) ,即同时满足原始方程及其对时间的一阶导数值。这一步可能会涉及到迭代法计算合适的 y 和 dy/dt 初值。 3. **编写用户自定义函数** 创建一个描述您系统动态特性的匿名函数或文件函数,并将其作为输入传递给 ode 解器。例如: ```matlab function res = myImplicitODE(t, y, yp) res = f(t, y, yp); % 其中f代表具体的数学表达式F(t, y, yp)=0 end ``` 然后调用 ode15i 并传入该函数句柄以及初始化猜测: 4. **示例代码** 假设我们有如下隐式 ODE 系统需要解: \[ t^2 + y^2 - (\frac {dy}{dt} ) ^2=0\] 我们可以按照上述步骤进行操作: 首先确定并给出近似合理的初始点; 接着利用 deval 来评估结果... 以下是完整流程的一个简化版本: ```matlab % 定义匿名函数表述模型 fun=@(t,y,yp) t.^2+y.^2-(yp).^2; % 提供估计的良好起点 [y0; yp0] 可通过试错得到合适组合 [y0,yp0]=decic(fun,...); sol=ode15i(fun,[tspan],y0,yp0,options); ``` ### 注意事项 - 要获得良好收敛效果往往依赖于准确设定起始值。 - 对某些非线性强的问题可能还需调节积分选项提高精度或者调整步长策略等设置。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值