PCL体素化降采样 实现立方体体素可视化

PCL体素化降采样 实现立方体体素可视化

  • PCL库函数自带的VoxelGrid类能够实现对点云进行降采样。基本原理是对点云进行网格划分,落在每个小立方块区域中的点的重心就代表网格中的所有点。因此通过控制网格边长就能够控制降采样的点数。缺点在于不能指定降采样点数大小,只能通过调参逼近。
  • 具体的体素化代码实现不做介绍,可以参考以下博客:
    体素栅格滤波(下采样)
  • 以下代码功能是可视化立方体体素
  • 目前没有实现改变体素颜色,后期视使用情况增添(版本二)
    在这里插入图片描述
#include <thread>
#include <pcl/common/common_headers.h>
#include <pcl/features/normal_3d.h>
#include <pcl/visualization/pcl_visualizer.h>

using namespace std::chrono_literals;
using namespace std;
int main(int argc, char** argv) {
   
   
	pcl::visualization::PCLVisualizer::Ptr viewer(new pcl::visualization::PCLVisualizer("HelloMyFirstVisualPCL"));
	viewer->setBackgroundColor(1, 1, 1);

	FILE*fp = NULL; fp = fopen("filename.txt", "r");	//2DpointDatas.txt
	if (!fp)
	{
   
   
		printf("打开文件失败!!\n");
		int m;
		cin >> m;
		exit(0);
	}
	float x = 0, y = 0, z = 0;
	int i = 
### 降采样的概念 降采样是一种用于点云数据压缩和简化的方法。通过将三维空间划分为多个小立方体(即),每个内的点会被替换为其代表点,通常是该内所有点的平均值或中心位置[^1]。 这种方法不仅减少了点的数量,还保持了原始点云的主要几何特征。因此,在许多点云处理任务中,降采样常被用作预处理步骤以提高计算效率[^2]。 --- ### 降采样实现方法 #### 算法流程 降采样的核心思想可以分解为以下几个部分: 1. **划分网格** 将整个点云的空间范围划分为大小相等的小立方体)。这些构成了一个三维网格结构[^3]。 2. **分配点到** 对于每一个点,判断其所属的,并将其存储至对应的容器中。这一过程可以通过简单的坐标映射完成。 3. **提取代表点** 遍历所有的,对于非空的,选取其中的一个点作为代表点。常见的策略包括: - 使用内所有点的质心作为代表点。 - 或者直接选择第一个进入的点[^4]。 --- ### 示例代码 (基于 Open3D) 以下是使用 Python 和 Open3D 库实现降采样的示例代码: ```python import open3d as o3d # 加载点云文件 pcd = o3d.io.read_point_cloud("input.ply") # 执行降采样 voxel_size = 0.05 # 设置尺寸 downsampled_pcd = pcd.voxel_down_sample(voxel_size=voxel_size) # 可视化结果 o3d.visualization.draw_geometries([downsampled_pcd]) ``` 上述代码中的 `voxel_size` 参数决定了的边长,较小的值会保留更多细节,而较大的值则进一步减少点数。 --- ### CUDA & PCL实现思路 如果需要在 GPU 上加速降采样,可以利用 CUDA 并行计算的优势。具来说,PCL 提供了一个高效的实现方式,主要涉及以下两个阶段: 1. **并行分配点到** 利用 GPU 的线程并行特性,快速将每个点分配到相应的中。 2. **并行计算质心** 同样借助 GPU 的并行能力,对每个非空内的点集计算质心,从而得到最终的降采样结果。 --- ### 总结 降采样作为一种高效的数据简化技术,广泛应用于点云处理领域。其实现既可以依赖成熟的库工具(如 Open3D、PCL),也可以通过自定义算法结合硬件加速(如 CUDA)来提升性能。无论哪种方式,合理设置参数(如尺寸)都是获得理想效果的关键因之一。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值