PDE题目

变分问题解的存在唯一性证明

分离变量法求解热传导方程

{ u t − u x x = 0 , x , t ∈ ( 0 , 1 ) , u ( x , 0 ) = s i n ( π x ) , x ∈ [ 0 , 1 ] , u ( 0 , t ) = 0 , u ( 1 , t ) = 0 , t ∈ [ 0 , 1 ] \left\{ \begin{aligned} &u_t -u_{xx} = 0, x, t\in (0,1), \\ &u(x,0) = sin(\pi x), x\in [0,1], \\ &u(0,t) = 0, u(1,t) = 0, t\in [0,1] \end{aligned} \right. utuxx=0,x,t(0,1),u(x,0)=sin(πx),x[0,1],u(0,t)=0,u(1,t)=0,t[0,1]

解:
为了使用分离变量法求解这个偏微分方程,我们假设解 u ( x , t ) u(x,t) u(x,t) 可以写成两个函数的乘积,即 u ( x , t ) = X ( x ) T ( t ) u(x,t) = X(x)T(t) u(x,t)=X(x)T(t),其中 X ( x ) X(x) X(x) 只依赖于 x x x T ( t ) T(t) T(t) 只依 t t t。我们将这个假设代入原方程,并利用偏导数的定义,得到:

X ( x ) T ′ ( t ) − X ′ ′ ( x ) T ( t ) = 0 X(x)T'(t) - X''(x)T(t) = 0 X(x)T(t)X′′(x)T(t)=0

为了分离变量,我们将上式两边同时除以 X ( x ) T ( t ) X(x)T(t) X(x)T(t),得到:

T ′ ( t ) T ( t ) = X ′ ′ ( x ) X ( x ) = − λ \frac{T'(t)}{T(t)} = \frac{X''(x)}{X(x)} = -\lambda T(t)T(t)=X(x)X′′(x)=λ

其中, − λ -\lambda λ 是一个常数。这里我们引入了负号是为了后续计算的方便。这样我们就得到了两个常微分方程:

  1. 时间方程: T ′ ( t ) + λ T ( t ) = 0 T'(t) + \lambda T(t) = 0 T(t)+λT(t)=0
  2. 空间方程: X ′ ′ ( x ) + λ X ( x ) = 0 X''(x) + \lambda X(x) = 0 X′′(x)+λX(x)=0

我们先来解空间方程。考虑到边界条件 u ( 0 , t ) = 0 u(0,t) = 0 u(0,t)=0 u ( 1 , t ) = 0 u(1,t) = 0 u(1,t)=0,我们有 X ( 0 ) = 0 X(0) = 0 X(0)=0 X ( 1 ) = 0 X(1) = 0 X(1)=0。空间方程是一个二阶常微分方程,其通解为:

X ( x ) = A sin ⁡ ( λ x ) + B cos ⁡ ( λ x ) X(x) = A\sin(\sqrt{\lambda}x) + B\cos(\sqrt{\lambda}x) X(x)=Asin(λ x)+Bcos(λ x)

应用边界条件 X ( 0 ) = 0 X(0) = 0 X(0)=0,我们得到 B = 0 B = 0 B=0。应用边界条件 X ( 1 ) = 0 X(1) = 0 X(1)=0,我们得到 sin ⁡ ( λ ) = 0 \sin(\sqrt{\lambda}) = 0 sin(λ )=0,这意味着 λ = n π \sqrt{\lambda} = n\pi λ =,其中 n n n 是正整数。因此,我们得到一系列的特征值 λ n = n 2 π 2 \lambda_n = n^2\pi^2 λn=n2π2 和相应的特征函数 X n ( x ) = sin ⁡ ( n π x ) X_n(x) = \sin(n\pi x) Xn(x)=sin(x)

接下来我们解时间方程。对于每个 λ n = n 2 π 2 \lambda_n = n^2\pi^2 λn=n2π2,我们有时间方程:

T n ′ ( t ) + n 2 π 2 T n ( t ) = 0 T_n'(t) + n^2\pi^2 T_n(t) = 0 Tn(t)+n2π2Tn(t)=0

这是一个一阶常微分方程,其通解为:

T n ( t ) = C n e − n 2 π 2 t T_n(t) = C_n e^{-n^2\pi^2 t} Tn(t)=Cnen2π2t

其中, C n C_n Cn 是一个常数。

因此,对于每个 n n n,我们有解 u n ( x , t ) = X n ( x ) T n ( t ) = C n sin ⁡ ( n π x ) e − n 2 π 2 t u_n(x,t) = X_n(x)T_n(t) = C_n \sin(n\pi x) e^{-n^2\pi^2 t} un(x,t)=Xn(x)Tn(t)=Cnsin(x)en2π2t。由于偏微分方程是线性的,我们可以将这些解叠加起来,得到总解:

u ( x , t ) = ∑ n = 1 ∞ C n sin ⁡ ( n π x ) e − n 2 π 2 t u(x,t) = \sum_{n=1}^{\infty} C_n \sin(n\pi x) e^{-n^2\pi^2 t} u(x,t)=n=1Cnsin(x)en2π2t

最后,我们需要确定系数 C n C_n Cn。这可以通过初始条件 u ( x , 0 ) = sin ⁡ ( π x ) u(x,0) = \sin(\pi x) u(x,0)=sin(πx) 来实现。我们有:

u ( x , 0 ) = ∑ n = 1 ∞ C n sin ⁡ ( n π x ) = sin ⁡ ( π x ) u(x,0) = \sum_{n=1}^{\infty} C_n \sin(n\pi x) = \sin(\pi x) u(x,0)=n=1Cnsin(x)=sin(πx)

这是一个傅里叶级数展开,其中只有当 n = 1 n=1 n=1 时, C n C_n Cn 不为零,且 C 1 = 1 C_1 = 1 C1=1。因此,最终的解为:

u ( x , t ) = sin ⁡ ( π x ) e − π 2 t u(x,t) = \sin(\pi x) e^{-\pi^2 t} u(x,t)=sin(πx)eπ2t

这就是使用分离变量法求解给定偏微分方程的过程。

半无界波动方程的边界条件化为齐次并使用延拓法求解

{ u t t − u x x = 0 , x > 0 , t > 0 , u ( x , 0 ) = sin ⁡ x , x > 0 , u t ( x , 0 ) = cos ⁡ x , x > 0 , u x ( 0 , t ) = 1 , t ≥ 0 \left\{ \begin{aligned} &u_{tt} -u_{xx} = 0, x>0,t>0, \\ &u(x,0) = \sin x, x>0, \\ &u_{t}(x,0) = \cos x, x>0, \\ &u_{x}(0,t) = 1, t\geq 0 \end{aligned} \right. uttuxx=0,x>0,t>0,u(x,0)=sinx,x>0,ut(x,0)=cosx,x>0,ux(0,t)=1,t0

解:

要将非齐次边界条件转化为齐次边界条件,并使用延拓法求解这个半无界问题,我们可以采取以下步骤:

  1. 非齐次边界条件的齐次化

    我们可以引入一个辅助函数 v ( x , t ) v(x,t) v(x,t),使得 u ( x , t ) = v ( x , t ) + f ( x , t ) u(x,t) = v(x,t) + f(x,t) u(x,t)=v(x,t)+f(x,t),其中 f ( x , t ) f(x,t) f(x,t) 是一个待定函数,用于消除非齐次边界条件。对于这个问题,我们可以选择 f ( x , t ) = t f(x,t) = t f(x,t)=t,这样 f x ( 0 , t ) = 0 f_x(0,t) = 0 fx(0,t)=0 f t ( x , 0 ) = 1 f_t(x,0) = 1 ft(x,0)=1,从而可以满足 u x ( 0 , t ) = 1 u_x(0,t) = 1 ux(0,t)=1 的条件。

    因此,我们有 u ( x , t ) = v ( x , t ) + t u(x,t) = v(x,t) + t u(x,t)=v(x,t)+t,并且新的问题变为关于 v ( x , t ) v(x,t) v(x,t) 的齐次边界条件问题:

    { v t t − v x x = 0 , x > 0 , t > 0 , v ( x , 0 ) = sin ⁡ x , x > 0 , v t ( x , 0 ) = cos ⁡ x − 1 , x > 0 , v x ( 0 , t ) = 0 , t ≥ 0. \left\{\begin{aligned} &v_{tt} - v_{xx} = 0, \quad x > 0, t > 0, \\ &v(x,0) = \sin x, \quad x > 0, \\ &v_{t}(x,0) = \cos x - 1, \quad x > 0, \\ &v_{x}(0,t) = 0, \quad t \geq 0. \end{aligned}\right. vttvxx=0,x>0,t>0,v(x,0)=sinx,x>0,vt(x,0)=cosx1,x>0,vx(0,t)=0,t0.

  2. 延拓法

    为了使用延拓法,我们需要将定义域从 x > 0 x > 0 x>0 扩展到整个实数轴。由于边界条件是齐次的,我们可以使用偶延拓(even extension):

    v ( x , t ) = { v ( x , t ) , x ≥ 0 , v ( − x , t ) , x < 0. v(x,t) = \begin{cases} v(x,t), & x \geq 0, \\ v(-x,t), & x < 0. \end{cases} v(x,t)={v(x,t),v(x,t),x0,x<0.

    延拓后的初始条件变为:

    v ( x , 0 ) = { sin ⁡ x , x ≥ 0 , sin ⁡ ( − x ) = − sin ⁡ x , x < 0 , v(x,0) = \begin{cases} \sin x, & x \geq 0, \\ \sin(-x) = -\sin x, & x < 0, \end{cases} v(x,0)={sinx,sin(x)=sinx,x0,x<0,
    v t ( x , 0 ) = { cos ⁡ x − 1 , x ≥ 0 , cos ⁡ ( − x ) − 1 = cos ⁡ x − 1 , x < 0. v_t(x,0) = \begin{cases} \cos x - 1, & x \geq 0, \\ \cos(-x) - 1 = \cos x - 1, & x < 0. \end{cases} vt(x,0)={cosx1,cos(x)1=cosx1,x0,x<0.

  3. 求解延拓后的问题

    现在,我们可以使用达朗贝尔公式求解延拓后的问题:

    v ( x , t ) = 1 2 [ v ( x + t , 0 ) + v ( x − t , 0 ) ] + 1 2 ∫ x − t x + t v t ( ξ , 0 )   d ξ . v(x,t) = \frac{1}{2}[v(x+t,0) + v(x-t,0)] + \frac{1}{2}\int_{x-t}^{x+t} v_t(\xi,0) \, d\xi. v(x,t)=21[v(x+t,0)+v(xt,0)]+21xtx+tvt(ξ,0)dξ.

    由于 v ( x , 0 ) v(x,0) v(x,0) v t ( x , 0 ) v_t(x,0) vt(x,0) 已知,我们可以直接计算上述表达式。

  4. 还原原始问题的解

    最后,我们可以通过 u ( x , t ) = v ( x , t ) + t u(x,t) = v(x,t) + t u(x,t)=v(x,t)+t 得到原始问题的解。

这就是将非齐次边界条件化为齐次的并使用延拓法求解这个半无界问题的方法。

  • 18
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值