基于camera的车道线检测

1. 简介

车道线检测策略可以分为两种方法:几何建模/传统的车道线检测方法和基于人工智能的技术。

1)几何建模/传统方法

传统检测算法使用的pipeline包括图像预处理、特征提取、车道线模型拟合和直线跟踪。

2)人工智能

基于摄像头图像

开源代码

数据集

环境

备注

LaneNet

https://github.com/MaybeShewill-CV/lanenet-lane-detection

分割

Tusimple

16.04(x64), python3.5, 

cuda-9.0, 

cudnn-7.0 with a GTX-1070 GPU,

tensorflow 1.12.0

IEEE IV conference

Lane2Seq

未开源

Tusimple、CULane、LLAMAS

CVPR2024

CLRNet

https://github.com/Turoad/clrnet

检测

CULane、Tusimple、LLAMAS

Ubuntu18.04, or 20.04,

Python >= 3.8

PyTorch >= 1.6 

CVPR 2022

稍优于GANet

CLRerNet

https://github.com/hirotomusiker/CLRerNet

WACV 2023

CULane数据集上效果优于CLRNet

LineCNN

-

-

-

IEEE 2020

LaneATT

https://github.com/lucastabelini/LaneATT

CULane、Tusimple、LLAMAS

  • Python >= 3.5

  • PyTorch == 1.6

CVPR 2021

LVLane

https://github.com/zillur-av/LVLane

TuSimple、

Caltech Lanes

 LVLane

python=3.8

pytorch==1.8.0

2023 IEEE

检测+分类

PINet

-

关键点

-

-

2002

FOLOLane

-

-

-

2021

GANet

GitHub - Wolfwjs/GANet: A Keypoint-based Global As

CULane、Tusimple

python=3.7

pytorch==1.6.0

CVPR 2022

基于BEV(单目)

开源代码

数据集

环境

备注

BEV-LaneDet

未开源

ApolloSim、OpenLane

CVPR 2023

Anchor3DLane

https://github.com/tusen-ai/Anchor3DLane

ApolloSim、OpenLane、ONCE-3DLane

python=3.7

pytorch==1.9.1

CVPR 2023

2. 数据集

TuSimple 、 KITTI、 Caltech、 Cityscapes、 Apollo Scape 、CULane 

3. CLRNet

3.1 环境部署:

pip install torch==1.10.2+cu113 torchvision==0.11.3+cu113 torchaudio==0.10.2 --extra-index-url https://download.pytorch.org/whl/cu113 

容器创建:docker run --gpus '"device=0"' --net=host -it -v /data3:/data3 --shm-size=32g --memory-swap=-1 --name=clrnet_jiao clrnet:jiao bash

原图大小:1640*590

网络输入大小:800*320

3.2 CULane数据集效果:

使用自采样本数据时需要配置切割高度cut_height = 472(根据成像效果设置)。

LLAMAS数据集模型在自采样本上的效果(cut_height = 472):图略

Tusimple数据集模型在自采样本的效果比其他两个数据集模型较好些:图略

4. 数据集对比

共同点:真值都是点集

CULane

LLAMAS

Tusimple

缺点

最多标记4条车道线,场景有限

高速场景

高速路

图像大小

1640*590

1276 x 717

1280x720

数量

133235 

79113

6408

是否分类(实虚线)

摄像头安装位置

车内

汽车外部的车牌处

卡车的靠近车牌的位置

数据集地址

CULane Dataset

Login

https://github.com/TuSimple/tusimple-benchmark/issues/3​​​​​​

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值