不同方法推导Gamma分布可加性产生的矛盾

不同方法推导Gamma分布可加性产生的矛盾

Gamma分布的概率密度函数表示如下:
X ∽ G ( α , β ) : f ( x ) = β α Γ ( α ) x α − 1 e − β x X \backsim G(\alpha,\beta): f(x)=\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x} XG(α,β):f(x)=Γ(α)βαxα1eβx
其对应的矩母函数为
M x ( t ) = ( 1 + β t ) − α {\rm M}_x(t)=(1+\beta t)^{-\alpha} Mx(t)=(1+βt)α
显然,若 X 1 ∽ G ( α 1 , β ) , X 2 ∽ G ( α 2 , β ) X_1 \backsim G(\alpha_1,\beta),X_2 \backsim G(\alpha_2,\beta) X1G(α1,β),X2G(α2,β),则 M x 1 ( t ) = ( 1 + t / β ) − α 1 , M x 2 ( t ) = ( 1 + t / β ) − α 2 {\rm M}_{x_1}(t)=(1+t/\beta)^{-\alpha_1},{\rm M}_{x_2}(t)=(1+t/\beta)^{-\alpha_2} Mx1(t)=(1+t/β)α1,Mx2(t)=(1+t/β)α2,所以 M x 1 ( t ) M x 2 ( t ) = ( 1 + t / β ) − ( α 1 + α 2 ) {\rm M}_{x_1}(t){\rm M}_{x_2}(t)=(1+t/\beta)^{-(\alpha_1+\alpha_2)} Mx1(t)Mx2(t)=(1+t/β)(α1+α2),所以 X 1 + X 2 ∽ G ( α 1 + α 2 , β ) X_1+X_2 \backsim G(\alpha_1+\alpha_2,\beta) X1+X2G(α1+α2,β),这即为Gamma分布的可加性原则。

从矩母函数的角度出发,Gamma分布可加性原则是显而易见的。然而,本人在利用其它方法推导这一性质时,却出现了矛盾,一时难以发现端倪。现将推导过程展示如下(针对 α 1 , α 2 \alpha_1,\alpha_2 α1,α2为大于等于1的整数的情况):

由概率论的知识我们知道,两个随机变量的和的概率密度函数是各自概率密度函数的卷积,因此若 X = X 1 + X 2 X=X_1+X_2 X=X1+X2,则
f x ( x ) = f x 1 ( x ) ∗ f x 2 ( x ) = ∫ 0 x f x 1 ( y ) f x 2 ( x − y ) d y = β α 1 + α 2 Γ ( α 1 ) Γ ( α 2 ) ∫ 0 x y α 1 − 1 e − β y ( x − y ) α 2 − 1 e − β ( x − y ) d y = β α 1 + α 2 Γ ( α 1 ) Γ ( α 2 ) e − β x ∫ 0 x y α 1 − 1 ( x − y ) α 2 − 1 d y (1) \begin{equation} \begin{aligned} f_x(x)&=f_{x_1}(x)*f_{x_2}(x)=\int_0^x f_{x_1}(y)f_{x_2}(x-y)dy\\ &=\frac{\beta^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}\int_0^x y^{\alpha_1-1}e^{-\beta y} (x-y)^{\alpha_2-1}e^{-\beta(x-y)}dy\\ &=\frac{\beta^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}e^{-\beta x}\int_0^x y^{\alpha_1-1} (x-y)^{\alpha_2-1}dy \end{aligned} \end{equation}\tag{1} fx(x)=fx1(x)fx2(x)=0xfx1(y)fx2(xy)dy=Γ(α1)Γ(α2)βα1+α20xyα11eβy(xy)α21eβ(xy)dy=Γ(α1)Γ(α2)βα1+α2eβx0xyα11(xy)α21dy(1)
针对(1)中最后一个等式的计算,采用不同方法出现了不同的结果:

方法1:用二项展开可以得到 ( x − y ) α 2 − 1 = ∑ i = 0 α 2 − 1 ( − 1 ) i ( α 2 − 1 i ) x α 2 − 1 − i y i (x-y)^{\alpha_2-1}=\sum_{i=0}^{\alpha_2-1} (-1)^i\begin{pmatrix}\alpha_2-1\\i\end{pmatrix}x^{\alpha_2-1-i} y^i (xy)α21=i=0α21(1)i(α21i)xα21iyi​,将其代入(1)中可以得到
f x ( x ) = β α 1 + α 2 Γ ( α 1 ) Γ ( α 2 ) e − β x ∑ i = 0 α 2 − 1 ( − 1 ) i ( α 2 − 1 i ) x α 2 − 1 − i ∫ 0 x y α 1 + i − 1 d y = β α 1 + α 2 Γ ( α 1 ) Γ ( α 2 ) [ ∑ i = 0 α 2 − 1 ( − 1 ) i ( α 2 − 1 i ) / ( α 1 + i ) ] x α 1 + α 2 − 1 e − β x (2) \begin{equation} \begin{aligned} f_x(x)&=\frac{\beta^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}e^{-\beta x}\sum_{i=0}^{\alpha_2-1}(-1)^i\begin{pmatrix}\alpha_2-1\\i \end{pmatrix}x^{\alpha_2-1-i} \int_0^x y^{\alpha_1+i-1}dy\\ &=\frac{\beta^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}[\sum_{i=0}^{\alpha_2-1}(-1)^i\begin{pmatrix}\alpha_2-1\\i \end{pmatrix}/(\alpha_1+i)]x^{\alpha_1+\alpha_2-1}e^{-\beta x} \end{aligned} \end{equation}\tag{2} fx(x)=Γ(α1)Γ(α2)βα1+α2eβxi=0α21(1)i(α21i)xα21i0xyα1+i1dy=Γ(α1)Γ(α2)βα1+α2[i=0α21(1)i(α21i)/(α1+i)]xα1+α21eβx(2)
显然,要想使命题得证,需要有 ∑ i = 0 α 2 − 1 ( − 1 ) i ( α 2 − 1 i ) / ( α 1 + i ) = B ( α 1 , α 2 ) \sum_{i=0}^{\alpha_2-1}(-1)^i\begin{pmatrix}\alpha_2-1\\i \end{pmatrix}/(\alpha_1+i)=\Beta(\alpha_1,\alpha_2) i=0α21(1)i(α21i)/(α1+i)=B(α1,α2),(其中 B ( α 1 , α 2 ) B(\alpha_1,\alpha_2) B(α1,α2)表示beta函数)但是这个等式似乎并不成立(可以简单地用数值验证)。因此利用上述方法无法使命题得证。

方法2:令 y = t x y=tx y=tx,将(1)转化为对 t t t的积分,可以得到
f x ( x ) = β α 1 + α 2 Γ ( α 1 ) Γ ( α 2 ) [ ∫ 0 1 t α 1 − 1 ( 1 − t ) α 2 − 1 d t ] x α 1 + α 2 − 1 e − β x = β α 1 + α 2 Γ ( α 1 ) Γ ( α 2 ) B ( α 1 , α 2 ) x α 1 + α 2 − 1 e − β x = β α 1 + α 2 Γ ( α 1 + α 2 ) x α 1 + α 2 − 1 e − β x (3) \begin{equation} \begin{aligned} f_x(x)&=\frac{\beta^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}[\int_0^1 t^{\alpha_1-1}(1-t)^{\alpha_2-1}dt]x^{\alpha_1+\alpha_2-1}e^{-\beta x}\\ &=\frac{\beta^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}\Beta(\alpha_1,\alpha_2)x^{\alpha_1+\alpha_2-1}e^{-\beta x}\\ &=\frac{\beta^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1+\alpha_2)}x^{\alpha_1+\alpha_2-1}e^{-\beta x} \end{aligned} \end{equation}\tag{3} fx(x)=Γ(α1)Γ(α2)βα1+α2[01tα11(1t)α21dt]xα1+α21eβx=Γ(α1)Γ(α2)βα1+α2B(α1,α2)xα1+α21eβx=Γ(α1+α2)βα1+α2xα1+α21eβx(3)
显然,命题得证。

暂时没发现为什么方法1没有能够使命题得证!!!

说明: 经过证明,确定上面两种推导方法得到的结果是一致的。具体地,我们要证明 ∑ i = 0 α 2 − 1 ( − 1 ) i ( α 2 − 1 i ) / ( α 1 + i ) = B ( α 1 , α 2 ) \sum_{i=0}^{\alpha_2-1}(-1)^i\begin{pmatrix}\alpha_2-1\\i \end{pmatrix}/(\alpha_1+i)=\Beta(\alpha_1,\alpha_2) i=0α21(1)i(α21i)/(α1+i)=B(α1,α2)​​​​这个等式是成立的,证明过程如下:
证明过程需要用到一个积分等式(该等式可从参考文献[1]中找到):
∫ 0 ∞ ( 1 − e − x / β ) α − 1 e − μ x d x = β B ( β μ , α ) , ( R e β > 0 , R e α > 0 , R e μ > 0 ) (4) \int_0^\infty(1-e^{-x/\beta})^{\alpha-1}e^{-\mu x}dx=\beta \Beta(\beta\mu,\alpha),({\rm Re\beta>0,{\rm Re}\alpha>0,{\rm Re}\mu>0})\tag{4} 0(1ex/β)α1eμxdx=βB(βμ,α),(Reβ>0,Reα>0,Reμ>0)(4)
根据(4),我们令 β = 1 \beta=1 β=1​,则有

∫ 0 ∞ ( 1 − e − x ) α − 1 e − μ x d x = ∫ 0 ∞ ∑ i = 0 α − 1 ( − 1 ) i ( α − 1 i ) e − ( i + μ ) x d x = ∑ i = 0 α − 1 ( − 1 ) i ( α − 1 i ) ∫ 0 ∞ e − ( i + μ ) x d x = ∑ i = 0 α − 1 ( − 1 ) i ( α − 1 i ) / ( i + μ ) = B ( μ , α ) (5) \begin{equation} \begin{aligned} \int_0^\infty(1-e^{-x})^{\alpha-1}e^{-\mu x}dx&=\int_0^\infty \sum_{i=0}^{\alpha-1}(-1)^i \begin{pmatrix}\alpha-1\\i\end{pmatrix}e^{-(i+\mu)x}dx\\ &=\sum_{i=0}^{\alpha-1}(-1)^i \begin{pmatrix}\alpha-1\\i\end{pmatrix}\int_0^\infty e^{-(i+\mu)x}dx\\ &=\sum_{i=0}^{\alpha-1}(-1)^i \begin{pmatrix}\alpha-1\\i\end{pmatrix}/(i+\mu)\\ &=\Beta(\mu,\alpha) \end{aligned} \end{equation}\tag{5} 0(1ex)α1eμxdx=0i=0α1(1)i(α1i)e(i+μ)xdx=i=0α1(1)i(α1i)0e(i+μ)xdx=i=0α1(1)i(α1i)/(i+μ)=B(μ,α)(5)

至此,得证。


参考文献

[1] Gradshteyn, I. S. and Ryzhik, L.M. “Table of Integrals, Series, and Products (6th ed)”, New York: Academic Press, 2000, pp. 331 and 899.

  • 7
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Wishart分布可加性可以通过证明矩阵的对数行列式的可加性来得到。具体地,假设$W_1$和$W_2$是两个$p \times p$的Wishart分布的矩阵,自由度分别为$n_1$和$n_2$,尺度矩阵分别为$V_1$和$V_2$。则矩阵的对数行列式的和为: $$ \begin{aligned} \log|W_1 + W_2| &= \log|W_1(I + W_1^{-1}W_2)| \\ &= \log|W_1| + \log|I + W_1^{-1}W_2| \\ &= (n_1-p-1)\log|V_1| - \sum_{i=1}^p\log\Gamma\left(\frac{n_1+1-i}{2}\right) \\ &\quad +\log|I + W_1^{-1}W_2| \\ &\quad + (n_2-p-1)\log|V_2| - \sum_{i=1}^p\log\Gamma\left(\frac{n_2+1-i}{2}\right) \\ &= \log|W_1| + \log|I + W_1^{-1/2}(W_1^{-1/2}W_2W_1^{-1/2})W_1^{-1/2}| \\ &\quad + \log|W_2| \\ &\quad - \log|I + W_1^{-1/2}(W_1^{-1/2}W_2W_1^{-1/2})W_1^{-1/2} + W_2^{-1/2}(W_1^{-1/2}W_2W_1^{-1/2})W_2^{-1/2}| \\ &\quad -\sum_{i=1}^p\log\Gamma\left(\frac{n_1+1-i}{2}\right) - \sum_{i=1}^p\log\Gamma\left(\frac{n_2+1-i}{2}\right) \end{aligned} $$ 其中,我们使用了矩阵的Woodbury矩阵恒等式$(A+UCV)^{-1}=A^{-1}-A^{-1}U(C^{-1}+VA^{-1}U)^{-1}VA^{-1}$,并将$W_1$分解为$W_1=Z_1Z_1^T$,其中$Z_1$是$p \times n_1$的矩阵,满足$Z_1^TZ_1=V_1$。同理,将$W_2$分解为$W_2=Z_2Z_2^T$,其中$Z_2$是$p \times n_2$的矩阵,满足$Z_2^TZ_2=V_2$。 进一步地,我们可以使用矩阵的特征值分解将上式中的$\log|I + W_1^{-1/2}(W_1^{-1/2}W_2W_1^{-1/2})W_1^{-1/2}|$表示为: $$ \begin{aligned} \log|I + W_1^{-1/2}(W_1^{-1/2}W_2W_1^{-1/2})W_1^{-1/2}| &= \sum_{i=1}^p\log(1+\lambda_i) \\ &= \sum_{i=1}^p\log\left(\frac{\lambda_i}{1+\lambda_i}\right) + \sum_{i=1}^p\log(1+\lambda_i) \\ &= \log|W_1^{-1}W_2| + \sum_{i=1}^p\log(1+\lambda_i) \end{aligned} $$ 其中,$\lambda_i$是矩阵$W_1^{-1/2}(W_1^{-1/2}W_2W_1^{-1/2})W_1^{-1/2}$的第$i$个特征值。 综上所述,我们可以将$\log|W_1+W_2|$表示为: $$ \begin{aligned} \log|W_1 + W_2| &= \log|W_1| + \log|W_2| + \log|I + W_1^{-1}W_2| \\ &\quad + \sum_{i=1}^p\log(1+\lambda_i) \\ &\quad -\log|I + W_1^{-1/2}(W_1^{-1/2}W_2W_1^{-1/2})W_1^{-1/2} + W_2^{-1/2}(W_1^{-1/2}W_2W_1^{-1/2})W_2^{-1/2}| \\ &\quad -\sum_{i=1}^p\log\Gamma\left(\frac{n_1+1-i}{2}\right) - \sum_{i=1}^p\log\Gamma\left(\frac{n_2+1-i}{2}\right) \end{aligned} $$ 因此,我们证明了Wishart分布可加性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值