Gamma分布的概率密度函数表示如下:
X ∽ G ( α , β ) : f ( x ) = β α Γ ( α ) x α − 1 e − β x X \backsim G(\alpha,\beta): f(x)=\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x} X∽G(α,β):f(x)=Γ(α)βαxα−1e−βx
其对应的矩母函数为
M x ( t ) = ( 1 + β t ) − α {\rm M}_x(t)=(1+\beta t)^{-\alpha} Mx(t)=(1+βt)−α
显然,若 X 1 ∽ G ( α 1 , β ) , X 2 ∽ G ( α 2 , β ) X_1 \backsim G(\alpha_1,\beta),X_2 \backsim G(\alpha_2,\beta) X1∽G(α1,β),X2∽G(α2,β),则 M x 1 ( t ) = ( 1 + t / β ) − α 1 , M x 2 ( t ) = ( 1 + t / β ) − α 2 {\rm M}_{x_1}(t)=(1+t/\beta)^{-\alpha_1},{\rm M}_{x_2}(t)=(1+t/\beta)^{-\alpha_2} Mx1(t)=(1+t/β)−α1,Mx2(t)=(1+t/β)−α2,所以 M x 1 ( t ) M x 2 ( t ) = ( 1 + t / β ) − ( α 1 + α 2 ) {\rm M}_{x_1}(t){\rm M}_{x_2}(t)=(1+t/\beta)^{-(\alpha_1+\alpha_2)} Mx1(t)Mx2(t)=(1+t/β)−(α1+α2),所以 X 1 + X 2 ∽ G ( α 1 + α 2 , β ) X_1+X_2 \backsim G(\alpha_1+\alpha_2,\beta) X1+X2∽G(α1+α2,β),这即为Gamma分布的可加性原则。
从矩母函数的角度出发,Gamma分布可加性原则是显而易见的。然而,本人在利用其它方法推导这一性质时,却出现了矛盾,一时难以发现端倪。现将推导过程展示如下(针对 α 1 , α 2 \alpha_1,\alpha_2 α1,α2为大于等于1的整数的情况):
由概率论的知识我们知道,两个随机变量的和的概率密度函数是各自概率密度函数的卷积,因此若 X = X 1 + X 2 X=X_1+X_2 X=X1+X2,则
f x ( x ) = f x 1 ( x ) ∗ f x 2 ( x ) = ∫ 0 x f x 1 ( y ) f x 2 ( x − y ) d y = β α 1 + α 2 Γ ( α 1 ) Γ ( α 2 ) ∫ 0 x y α 1 − 1 e − β y ( x − y ) α 2 − 1 e − β ( x − y ) d y = β α 1 + α 2