不同方法推导Gamma分布可加性产生的矛盾

不同方法推导Gamma分布可加性产生的矛盾

Gamma分布的概率密度函数表示如下:
X ∽ G ( α , β ) : f ( x ) = β α Γ ( α ) x α − 1 e − β x X \backsim G(\alpha,\beta): f(x)=\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x} XG(α,β):f(x)=Γ(α)βαxα1eβx
其对应的矩母函数为
M x ( t ) = ( 1 + β t ) − α {\rm M}_x(t)=(1+\beta t)^{-\alpha} Mx(t)=(1+βt)α
显然,若 X 1 ∽ G ( α 1 , β ) , X 2 ∽ G ( α 2 , β ) X_1 \backsim G(\alpha_1,\beta),X_2 \backsim G(\alpha_2,\beta) X1G(α1,β),X2G(α2,β),则 M x 1 ( t ) = ( 1 + t / β ) − α 1 , M x 2 ( t ) = ( 1 + t / β ) − α 2 {\rm M}_{x_1}(t)=(1+t/\beta)^{-\alpha_1},{\rm M}_{x_2}(t)=(1+t/\beta)^{-\alpha_2} Mx1(t)=(1+t/β)α1,Mx2(t)=(1+t/β)α2,所以 M x 1 ( t ) M x 2 ( t ) = ( 1 + t / β ) − ( α 1 + α 2 ) {\rm M}_{x_1}(t){\rm M}_{x_2}(t)=(1+t/\beta)^{-(\alpha_1+\alpha_2)} Mx1(t)Mx2(t)=(1+t/β)(α1+α2),所以 X 1 + X 2 ∽ G ( α 1 + α 2 , β ) X_1+X_2 \backsim G(\alpha_1+\alpha_2,\beta) X1+X2G(α1+α2,β),这即为Gamma分布的可加性原则。

从矩母函数的角度出发,Gamma分布可加性原则是显而易见的。然而,本人在利用其它方法推导这一性质时,却出现了矛盾,一时难以发现端倪。现将推导过程展示如下(针对 α 1 , α 2 \alpha_1,\alpha_2 α1,α2为大于等于1的整数的情况):

由概率论的知识我们知道,两个随机变量的和的概率密度函数是各自概率密度函数的卷积,因此若 X = X 1 + X 2 X=X_1+X_2 X=X1+X2,则
f x ( x ) = f x 1 ( x ) ∗ f x 2 ( x ) = ∫ 0 x f x 1 ( y ) f x 2 ( x − y ) d y = β α 1 + α 2 Γ ( α 1 ) Γ ( α 2 ) ∫ 0 x y α 1 − 1 e − β y ( x − y ) α 2 − 1 e − β ( x − y ) d y = β α 1 + α 2

Gamma 分布是一种连续概率分布,通常用于建模正实数上的随机变量。这种分布在统计学和机器学习中有广泛的应用。 关于 Gamma 分布可加和可乘的解释如下: **可加** 当两个独立的随机变量分别服从参数为$(\alpha_1, \beta)$ 和 $(\alpha_2, \beta)$ 的 Gamma 分布时,它们之和也将服从 Gamma 分布,其形状参数等于原来两个参数相加之和$\alpha = \alpha_1 + \alpha_2$,而尺度参数 $ 保持不变。这可以推广至任意有限个相互独立同尺度参数的 Gamma 分布随机变量求和的情况。 具体来说,如果有$个独立的随机变量 $X_i ∼ Γ(\alpha_i, β), i=1,...,n$, 则他们的总和也服从 Gamma 分布: $$ X = \sum_{i=1}^{n} X_i ∼ Γ(\sum_{i=1}^{n}\alpha_i, β) $$ **可乘** Gamma 分布本身没有直接定义的简单形式的可乘;即如果两个独立的 Gamma 分布随机变量相乘,则结果不一定是另一个 Gamma 分布。然而,有一种特殊情况被称为Bartlett's decomposition,涉及到 Wishart 分布(多元正态样本协方差矩阵的一种分布),其中涉及到了 Gamma 分布和其他分布之间的关系。 此外,若考虑的是比例因子而非真正的乘法运算,那么改变 Gamma 分布中的尺度参数相当于对原随机变量进行了线变换。例如,设有一个随机变量 $Y=aX$ 其中$ 是常数,且 $X∼Γ(α,β)$ ,则新的随机变量 Y 将会服从一个新的 Gamma 分布,但它的尺度参数变为原来的 a 倍,即 $Y∼Γ(α,aβ)$。 以上就是有关 Gamma 分布的一些基本数学质以及可加和所谓“可乘”的简要说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值