[TPAMI 2024]Vision-Language Models for Vision Tasks: A Survey

论文网址:Vision-Language Models for Vision Tasks: A Survey | IEEE Journals & Magazine | IEEE Xplore

论文Github页面:GitHub - jingyi0000/VLM_survey: Collection of AWESOME vision-language models for vision tasks

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 心得

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Background

2.3.1. Training Paradigms for Visual Recognition

2.3.2. Development of VLMs for Visual Recognition

2.3.3. Relevant Surveys

2.4. VLM Foundations

2.4.1. Network Architectures

2.4.2. VLM Pre-Training Objectives

2.4.3. VLM Pre-Training Frameworks

2.4.4. Evaluation Setups and Downstream Tasks

2.5. Datasets

2.5.1. Datasets for Pre-Training VLMs

2.5.2. Datasets for VLM Evaluation

2.6. Vision-Language Model Pre-Training

2.6.1. VLM Pre-Training With Contrastive Objectives

2.6.2. VLM Pre-Training With Generative Objectives

2.6.3. VLM Pre-Training With Alignment Objectives

2.6.4. Summary and Discussion

2.7. VLM Transfer Learning

2.7.1. Motivation of Transfer Learning

2.7.2. Common Setup of Transfer Learning

2.7.3. Common Transfer Learning Methods

2.7.4. Summary and Discussion

2.8. VLM Knowledge Distillation

2.8.1. Motivation of Distilling Knowledge From VLMs

2.8.2. Common Knowledge Distillation Methods

2.8.3. Summary and Discussion

2.9. Performance Comparison

2.9.1. Performance of VLM Pre-Training

2.9.2. Performance of VLM Transfer Learning

2.9.3. Performance of VLM Knowledge Distillation

2.9.4. Summary

2.10. Future Directions

2.11. Conclusion

3. Reference


1. 心得

(1)依旧放松一下,以及很久没看TPAMI了,感觉一直很认可TPAMI的质量啊,拜读一下

(2)感觉比起长篇大论的n个模型介绍,突出每种模型的重点也是非常不错的。和我之前看的一个TPAMI综述一样,就写了损失。然后数据集介绍太多其实也有点睿智,这篇就是精简了。挺好的挺好的顾得顾得

(3)好就好在有些总结放表格里,没有那种给我硬塞文本的恶心感

(4)感觉如果要介绍一些新颖的模型,可以不从头到尾全部说一遍,而是突出它们某个方面的新颖,就把创新写了就行了

(5)还可以,这边给到一个较高的评价

2. 论文逐段精读

2.1. Abstract

        ①Existing problems: train DNN for each visual task, which is laborious and time costing

        ②Content: a) background of VLM in visual task, b) doundations of VLM, c) datasets, d) pretraining, transfer learning and knowledge distillation methods of VLM, e) benchmarks, f) challenges

laborious  adj.费力的;辛苦的

2.2. Introduction

        ①New paradigm: Pre-training (on large scale data w/ or w/o label), Fune-tuning (for specific labelled training data), and Prediction, see (a) and (b):

        ②Vision-Language Model Pre-training and Zero-shot Prediction which do not need fune-tuning:

        ③VLM publication number on Google Scholar:

frisbee  n.(投掷游戏用的)飞盘;飞碟

2.3. Background

2.3.1. Training Paradigms for Visual Recognition

(1)Traditional Machine Learning and Prediction

        ①Mostly hand-crafted and lightweight but hard to cope with complex or multi tasks

        ②Poor scalability

(2)Deep Learning From Scratch and Prediction

        ①Low speed convergence from scratch

        ②A mount of labels needed

(3)Supervised Pre-Training, Fine-Tuning and Prediction

        ①Speed up convergence

(4)Unsupervised Pre-Training, Fine-Tuning & Prediction

        ①Does not require labelled data

        ②Beter performance due to larger samples learning

(5)VLM Pre-Training and Zero-Shot Prediction

        ①Discarding fine-tuning

        ②Future directions: a) large scale informative image-text data, b) high-capacity models, c) new pre-training objectives

2.3.2. Development of VLMs for Visual Recognition

        ①3 improvements to VLMs:

2.3.3. Relevant Surveys

        ①Framework of their review:

2.4. VLM Foundations

2.4.1. Network Architectures

        ①Number of image-text pairs: N

        ②Features extracted from pairs: \mathcal{D}=\left \{ x^I_n, x^T_n\right \}^N_{n=1}, where x with superscript I denotes image sample with T denotes text

        ③Image encoder and text encoder in DNN: f_\theta / f_\phi

        ④Encoding operation: z_n^I=f_\theta(x_n^I) and z_n^T=f_\theta(x_n^T)

(1)Architectures for Learning Image Features

        ①CNN-based architectures: such as VGG, ResNet and EfficientNet

        ②Transformer-base architectures: such as ViT

(2)Architectures for Learning Language Features

        ①The framework of standard Transformer: 6 blocks in encoder (each with a multi-head attention layer and MLP) and 6 blocks in decoder (each with a multi-head attention layer, a masked multi-head layer and MLP)

2.4.2. VLM Pre-Training Objectives

(1)Contrastive Objectives

        ①Image Contrastive Learning: close with positive keys and faraway from negative keys in embedding space. For B images(实际上作者这里表达得很特殊,他们是说“对于这样的batch size”大小,这是比较贴近代码的表达,如果要概念上的表达其实就看成总共有这么多样本就好), this loss always be:

\mathcal{L}_I^\mathrm{InfoNCE}=-\frac{1}{B}\sum_{i=1}^{B}\log\frac{\exp{(z_i^I\cdot z_+^I/\tau)}}{\sum_{j=1,j\neq i}^{B+1}\exp(z_i^I\cdot z_j^I/\tau)}

where z_i^I denotes query embedding, \{z_j^I\}_{j=1,j\neq i}^{B+1} denotes key embeddings, z_+^I denotes positive keys in the i-th sample, \tau denotes temperature hyper-parameter

        ②Image-Text Contrastive Learning: pull paired embeddings closed and others away:

\begin{gathered} \mathcal{L}_{I\to T} =-\frac1B\sum_{i=1}^B\log\frac{\exp{(z_i^I\cdot z_i^T/\tau)}}{\sum_{j=1}^B\exp(z_i^I\cdot z_j^T/\tau)} \\ \mathcal{L}_{T\to I} =-\frac1B\sum_{i=1}^B\log\frac{\exp{(z_i^T\cdot z_i^I/\tau)}}{\sum_{j=1}^B\exp(z_i^T\cdot z_j^I/\tau)}\\ \mathcal{L}_{\mathrm{infoNCE}}^{IT}=\mathcal{L}_{I\to T}+\mathcal{L}_{T\to I} \end{gathered}

where \mathcal{L}_{I\to T} denotes contrasting the query image with the text keys, \mathcal{L}_{T\to I} denotes contrasting the query text with image keys

        ③Image-Text-Label Contrastive Learning: supervised:

\begin{gathered} \mathcal{L}_{I\to T}^{ITL} =-\sum_{i=1}^B\frac1{|\mathcal{P}(i)|}\sum_{k\in\mathcal{P}(i)}\log\frac{\exp{(z_i^I\cdot z_k^T/\tau)}}{\sum_{j=1}^B\exp(z_i^I\cdot z_j^T/\tau)} \\ \mathcal{L}_{T\to I}^{ITL} =-\sum_{i=1}^B\frac1{|\mathcal{P}(i)|}\sum_{k\in\mathcal{P}(i)}\log\frac{\exp{(z_i^T\cdot z_k^I/\tau)}}{\sum_{j=1}^B\exp(z_i^T\cdot z_j^I/\tau)}\\ \mathcal{L}_{\mathrm{infoNCE}}^{ITL}=\mathcal{L}_{I\to T}^{ITL}+\mathcal{L}_{T\to I}^{ITL} \end{gathered}

where k\in\mathcal{P}(i)=\{k|k\in B,y_k=y_i\}y denotes the class label of (z^I,z^T)(相当于多增加了一个样本类循环)

(2)Generative Objectives

        ①Masked Image Modelling: learns cross-patch correlation by masking a set of patches and reconstructing images. The loss usually is:

\mathcal{L}_{MIM}=-\frac1B\sum_{i=1}^B\log f_\theta(\overline{x}_i^I\mid\hat{x}_i^I)

where \overline{x}_i^I denotes masked patches, \hat{x}_i^I denotes unmasked patches(这“|”什么玩意儿啊条件概率吗但是说不通?在不mask的情况下mask的概率???怎么感觉反了呢还是我有问题

        ②Masked Language Modelling: mask at a specific ratio:

\mathcal{L}_{MLM}=-\frac1B\sum_{i=1}^B\log f_\phi(\overline{x}_i^T\mid\hat{x}_i^T)

        ③Masked Cross-Modal Modelling: randomly masks a subset of image patches and a subset of text tokens then reconstruct by unmasked ones:

\mathcal{L}_{MCM}=-\frac{1}{B}\sum_{i=1}^{B}[\log f_{\theta}(\overline{x}_{i}^{I}|\hat{x}_{i}^{I},\hat{x}_{i}^{T})+\log f_{\phi}(\overline{x}_{i}^{T}|\hat{x}_{i}^{I},\hat{x}_{i}^{T})]

        ④Image-to-Text Generation: through image and text pairs to predict text:

\mathcal{L}_{ITG}=-\sum_{l=1}^L \log f_\theta(x^T\mid x_{<l}^T,z^I)

where L denotes the number of tokens, z^I is the embedding of the image paired with x^T

(3)Alignment Objectives

        ①Image-Text Matching: BCE loss:

\mathcal{L}_{IT}=p\log\mathcal{S}(z^I,z^T)+(1-p)\log(1-\mathcal{S}(z^I,z^T))

where \mathcal{S}\left ( \cdot \right ) measures the alignment probability between the image and text, p=1 when matches otherwise 0

        ②Region-Word Matching: model local cross-modal correlation in dense scenes:

\mathcal{L}_{RW}=p\log\mathcal{S}^r(r^I,w^T)+(1-p)\log(1-\mathcal{S}^r(r^I,w^T))

where (r^I,w^T) denotes a region-word pair, p=1 when matches otherwise 0

2.4.3. VLM Pre-Training Frameworks

        ①two-tower, two-leg and one-tower pre-training approaches:

2.4.4. Evaluation Setups and Downstream Tasks

(1)Zero-Shot Prediction

        ①Image Classification: apply prompt engineering and compare embeddings of images and texts

        ②Semantic Segmentation: comparing the embeddings of the given image pixels and texts

        ③Object Detection: comparing the embeddings of the given object proposals and texts

        ④Image-Text Retrieval: retrieve the demanded samples from one modality given the cues from another modality, text-to-image or image-to-text

(2)Linear Probing

        ①freeze pre-trained VLM→get embedding→train a linear classifier to classify these embeddings

2.5. Datasets

         ①Widely Used Image-Text Datasets for VLM Pre-Training:

        ②Widely-Used Visual Recognition Datasets for VLM Evaluation:

2.5.1. Datasets for Pre-Training VLMs

        ①Collection of image-text data is easier and cheaper than traditional crowd-labelled data

        ②⭐Some researches utilize auxiliary datasets to provide additional information for better vision-language modelling, such as GLIP leverages Object365 for extracting region-level features

2.5.2. Datasets for VLM Evaluation

        ①Count each type of datasets

2.6. Vision-Language Model Pre-Training

        ①Vision-Language Model Pre-Training Methods:

2.6.1. VLM Pre-Training With Contrastive Objectives

(1)Image Contrastive Learning

        ①e.g. SLIP utilizes infoNCE loss to learn the discriminative image features

(2)Image-Text Contrastive Learning

        ①Learning the correlation between pair image-text, and pull irrelevant matchings away:

(3)Image-Text-Label Contrastive Learning

        ①Encodding image-text-label to one shared space:

(4)Discussion

        ①Challenge 1: Joint optimizing positive and negative pairs is complicated and challenging

        ②Challenge 2: Heuristic temperature hyper-parameter selection

2.6.2. VLM Pre-Training With Generative Objectives

(1)Masked Image Modelling

        ①Image patches mask strategy:

(2)Masked Language Modelling

        ①Text mask strategy:

(3)Masked Cross-Modal Modelling

        ①Mask image and text at the same time

(4)Image-to-Text Generation

        ①Encode images and then decode them to match the texts

(5)Discussion

        ①Learning context information

2.6.3. VLM Pre-Training With Alignment Objectives

(1)Image-Text Matching

        ①Match image and text pairs

(2)Region-Word Matching

        ①Match region and text pairs:

(3)Discussion

        ①Alignment always be context information or correlation enhancing

2.6.4. Summary and Discussion

        ①Recent VLM pre-training focuses on learning global vision-language correlation or models local fine-grained vision-language correlation via region-word matching

2.7. VLM Transfer Learning

2.7.1. Motivation of Transfer Learning

        ①Chanllenges for pretrained VLM: a) different downstream distribution,b) different downstream task

2.7.2. Common Setup of Transfer Learning

        ①Unsupervised methods are more efficient and promising

2.7.3. Common Transfer Learning Methods

        ①3 types of VLM transfer models:

(1)Transfer Via Prompt Tuning

        ①Transfer with Text Prompt Tuning: 

        ②Transfer with Visual Prompt Tuning: 

        ③Transfer with Text-Visual Prompt Tuning: tune image and text together

        ④Discussion: Challenge of this is low flexibility by following the manifold (distribution) of the original VLMs in prompting

(2)Transfer Via Feature Adaptation

        ①Fine-tune the feature by additional feature adapter:

but has intellectual property problem

(3)Other Transfer Methods

        ①Lists other methods

2.7.4. Summary and Discussion

        ①2 main methods of VLM transfer learning: prompt tuning and feature adapter

2.8. VLM Knowledge Distillation

2.8.1. Motivation of Distilling Knowledge From VLMs

        ①VLM knowledge distillation distils general and robust VLM knowledge to task-specific models without the restriction of VLM architecture

intact  adj.完整的;完整;完好无损

2.8.2. Common Knowledge Distillation Methods

(1)Knowledge Distillation for Object Detection

        ①Introduced basic and prompt based knowledge distillation for open vocabulary object detection

(2)Knowledge Distillation for Semantic Segmentation

        ①Also basic and weak supervised distillation methods

2.8.3. Summary and Discussion

        ①More flexible than transfer learning

2.9. Performance Comparison

2.9.1. Performance of VLM Pre-Training

        ①Performance comparison on image classification:

        ②Data and model size test:

        ③The main source of VLM advantages: a) large samples, b) large model, c) task-agnostic learning

        ④Segmentation performance:

        ⑤Detection performance:

        ⑥Limitation: a) saturates when continuously expanding the scale of the model, 2) computing costs in pre-training, c) excessive computation and memory overheads in both training and inference

2.9.2. Performance of VLM Transfer Learning

        ①Image classification performance:

2.9.3. Performance of VLM Knowledge Distillation

        ①Object detection performance:

        ②Semantic segmentation performance:

2.9.4. Summary

        ①The baseline tests are not unified

2.10. Future Directions

(1)For VLM pretraining:

        ①Fine-grained vision-language correlation modelling

        ②Unification of vision and language learning

        ③Pre-training VLMs with multiple languages

        ④Data-efficient VLMs: increase supervision among image-text pairs training

        ⑤Pre-training VLMs with LLMs: 

(2)For VLM transfer learning:

        ①Unsupervised VLM transfer

        ②VLM transfer with visual prompt/adapter

        ③Test-time VLM transfer

        ④VLM transfer with LLMs

(3)VLM knowledge distillation

        ①Extract knowledge from multi VLMs

        ②Other visual tasks, such as instance segmentation, panoptic segmentation, person re-identification etc.

panoptic  adj.全景的;(用图)表示物体(一眼可见,显示)全貌的;一目了然的

2.11. Conclusion

        good

3. Reference

Zhang, J. et al. (2024) Vision-Language Models for Vision Tasks: A Survey. TPAMI, 46(8): 5625-5644. doi: 10.1109/TPAMI.2024.3369699

### TPAMI 2024 年关于图像去噪的研究概述 在TPAMI 2024年的研究中,有一篇重要的论文提出了无需去噪的含噪图像表示方法[^1]。这项工作旨在解决具有挑战性的噪声退化问题,并提出了一种新的时频判别图像表示技术。这种方法不仅能够提供信息噪声鲁棒性,还能保持几何不变性,而不需要任何学习过程或显式的去噪操作。 具体而言,这种新方法适用于多种小规模鲁棒视觉问题,尤其是在安全和取证领域中的对抗假设场景下表现出显著潜力。其核心优势在于能够在不依赖传统去噪算法的情况下实现对含噪图像的有效表征,从而简化了处理流程并提高了效率。 此外,在多模态图像修复与融合方面也有相关进展。另一项研究表明,通过设计一种名为DeepMCDL的新颖可解释网络,可以有效应对复杂的图像恢复任务[^2]。尽管此部分重点并非完全集中于单一模式下的去噪问题,但它展示了如何利用深度学习框架结合字典学习机制来提升图像质量,这对于理解更广泛的图像增强策略提供了有价值的见解。 对于特定类型的干扰因素如雨水影响,则存在专门针对此类情况开发的技术方案。例如,“图像去雨Transformer”的研究成果涵盖了多个公开可用的数据集用于验证模型性能,其中包括但不限于Rain200H、Rain200L以及SPAData等[^3]。虽然这些资源主要用于评估去除降雨效果的能力,但从侧面反映了当前学术界对于复杂环境下信号提取的关注程度,这也间接促进了通用型图像去噪理论的发展方向。 综上所述,无论是专注于构建新型无监督式含噪图像表达方式还是探索跨域协作优化路径,都可以看出近年来围绕提高数字媒体抗干扰特性的科研活动正呈现出蓬勃发展的态势。 ```python # 示例代码片段展示可能应用于图像预处理阶段的操作逻辑 import numpy as np def apply_noise_robust_representation(image_array): # 假设此处实现了基于时频分析的方法 transformed_image = np.fft.fftshift(np.fft.fft2(image_array)) return abs(transformed_image) # 调用函数模拟输入输出转换过程 noisy_input = np.random.rand(256, 256) * 255 processed_output = apply_noise_robust_representation(noisy_input) ``` ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值