滤波和非线性优化算法的比较

ORB-SLAM相关 专栏收录该内容
3 篇文章 0 订阅

这个问题在高翔博士的十四讲里有详细的阐述(P244),主要对比了EKF和非线性优化方法的差异,主要包括3个方面,这篇EKF算法与非线性优化算法的比较进行了概述
其中第二点提到,从k-1时刻到k时刻,EKF只在k-1时刻做了一次线性化,与之相对的,非线性优化是一个多次线性化的过程。然而非线性优化一次迭代,以高斯牛顿法为例,也是在当前计算值处进行一次线形化,如何理解所谓的多次线性化呢?
考虑SLAM系统,EKF的线性化过程是在k-1时刻状态的基础上利用观测得到了后验值,但非线性程度很高的情况下,我们并不确定这个步进是否是线性的,所以说不能确定该点的线性化近似在后验概率处仍然是有效的,而考虑非线性优化方法,会根据k-1时刻和k时刻的状态、观测构造一个目标函数(如重投影误差)然后使其最小化,这个最小化的过程是反复迭代直到满足中止条件为之的,每一步迭代都要在得到的状态值处重新线性化,因此是一个多次线性化、逐步逼近的过程

  • 0
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值