卡尔曼滤波器和优化的本质理解

本文探讨了卡尔曼滤波器和优化的区别,解释了滤波器如何在意不确定度并逐步优化对未知量的估计。通过举例说明滤波器如何在信息不足时缩小不确定性,而在信息充足时持续优化。同时,介绍了卡尔曼滤波在处理随机变量分布时的数学原理,以及马尔科夫假设在滤波中的应用。
摘要由CSDN通过智能技术生成

非线性最小二乘优化中,最重要的是那个雅克比矩阵。每一行对应一个观察两,里面的值代表要减少这个观察量的误差,其他被优化的量需要做的改变。而每一列就是这个观察量需要怎么变才能减少不同的观察量。对于一个优化量,对有的观察量需要增加值,有的需要减少。那到底是要减少还是增加呢?就把所有观察量对应的变化求个平均,得到这个迭代优化量的跟新值。

如果所有观察对应的更新量都是一致的,说明观察量质量高,反之亦然。

换个角度想,即使只有一行,我们仍然可以算出一个跟新量。所以我们有两个选择,一个是用所有观察量结算出一个更新量,还是每次用一个观察算出一个更新量,跟新变量,再用第二个观察量算出一个更新量,然后。。。这两种方式就是全局优化和滤波器的本质不同。

而滤波器为什么很在意不确定度,因为不确定度给出了两次观察的重要性的比值。就还比求均值,我们是把所有东西加一起了,除以个数。还是每次先把一个值除以一个系数再累加上去。当你用第一种方法的时候,你不关系某个数据对最终的结果的总要性。

============================

假设我们有两个未知量想要知道他们的值。最直接的方法是找到两个和这两个未知量相关的方程,求解方程组就能得到他们的值。

但如果我们只能得到一个方程呢?也许你会说这个问题无解。但是换个角度想,虽然只有一个方程,但也不没有好,至少我们还是多了一些关于这两个位置量的信息。

很多情况下,我们不能一下得到足够的关于所有未知量的方程,但随着时间的推进,我们

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值