引言
在人工智能领域,大语言模型(LLM)的“幻觉”问题始终是落地应用的瓶颈之一。RAG(Retrieval-Augmented Generation,检索增强生成)技术通过引入外部知识库,显著提升了生成内容的准确性和可靠性。而Embedding模型作为RAG的核心组件,承担着将文本语义转化为数学向量的关键任务。本文将从背景、定义、原理三个维度深入解析Embedding模型,并结合工程实践探讨其优化方向。
---
一、背景:为何需要Embedding模型?
1.1 大模型的局限性
大语言模型(如GPT系列、通义千问等)虽然具备强大的生成能力,但其训练数据存在知识时效性不足(如无法覆盖最新事件)和领域覆盖不全(如专业医学、法律知识)的问题。此外,直接使用LLM处理私有数据存在安全风险,且模型可能因数据稀疏性生成“幻觉”答案。
1.2 RAG的解决方案
RAG通过“检索-生成”双阶段机制解决上述问题:
- 检索阶段:从外部知识库中提取与用户查询相关的信息。
- 生成阶段:结合检索结果生成最终答案。
而Embedding模型在此过程中,负责将文本转换为语义向量,实现高效的语义匹配。
1.3 传统方法的不足
传统关键词匹配(如TF-IDF)无法捕捉语义相似性。例如,“汽车”和“车辆”在关键词检索中可能被视作无关,但Embedding模型能在向量空间中将其映射到相近位置。
简单来说,在使用RAG搭建本地知识库时,Embedding模型就如同图书馆的智能索引系统,能让我们准确找到所需的知识。