【运动规划算法项目实战】Voronoi图

本文介绍了Voronoi图的概念、计算方法,包括Fortune算法和Delaunay三角剖分,以及它们在ROS中的实现,强调了Voronoi图在机器人路径规划中的重要性。
摘要由CSDN通过智能技术生成


前言

Voronoi图,也称为Dirichlet图,是计算几何学和图形计算中的一个重要概念。它是根据一组点将空间分割成一些区域的方法,其中每个区域都包含一个最近的点。这个概念可以应用于许多领域,如机器人路径规划、计算机视觉、地图制作等等。本文将介绍Voronoi图的概念、性质和应用,并对如何实现Voronoi图进行讨论。


一、 简介

Voronoi图由俄罗斯数学家Georgy Voronoi于1908年首次提出。它是指一组离散点集的Voronoi图是由所有距离最近的离散点集中的点组成的连续区域的图形表示。这些区域称为Voronoi单元或Dirichlet单元。Voronoi图的应用非常广泛,例如计算机图形学、机器人路径规划、GIS和地图制作等等。

在这里插入图片描述


二、 Voronoi图的计算

计算Voronoi图的方法有很多种,其中比较常见的是Fortune算法和Delaunay

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Travis.X

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值