文章目录
- 前言
- 一、梯形分解(Trapezoid cellular decomposition)原理
- 二、Boustrophedon分解(Boustrophedon cellular decomposition)原理
- 三、Morse分解
- 四、Brushfire分解法
- 五、Wave-Front分解
- 六、开源项目
-
- 6.1 CoveragePlanner
- 6.2 boustrophedon_cellular_decomposition
- 6.3 BoustrophedonCellularDecompositionPathPlanning
- 6.4 polygon_coverage_planning
- 6.5 ipa_coverage_planning
- 6.6 GA-TSPCPP
- 6.7 Comple-Coverage-Path-PLanning-Based-on-Cell-Desomposition
- 6.8 CoveragePlanning
- 6.9 CoverageActiveSLAM
- 6.10 trajgenpy
- 6.11 path-planning
- 七、参考文献
前言
全覆盖规划在机器人学领域具有重要意义,其应用场景涵盖了自动农场、扫地机器人、扫描监视无人机等多个领域。该问题的核心目标是使机器人能够从指定起点出发,规划一条避开障碍物、同时路径尽可能短的轨迹,从而实现对特定区域的全面覆盖。
在实际应用中,全覆盖规划的成功实现对于提高机器人在各类环境中的工作效率至关重要。这一问题的解决涉及到高效的路径规划和规划区域分解技术。
其中,梯形单元分解算法是一种常用分区的技术,过将地图上需要规划的区域进行分区,采用梯形分解的方式,可以更好地应对复杂环境。
全覆盖算法规划流程
环境建模->目标区域分解->子区域遍历->子区域内部全覆盖规划->漏扫区域规划。
一、梯形分解(Trapezoid cellular decomposition)原理
梯形单元分解算法(trapezoid cellular decomposition),又称基于扫描线分解,是一种用于将不规则多边形划分为简单梯形的方法,通常应用于全覆盖规划算法中对区域的划分。该算法的核心思想是通过将复杂的多边形转化为一系列相邻且相