【运动规划算法项目实战】全覆盖分区算法

本文介绍了机器人全覆盖路径规划的重要性和常见算法,包括梯形分解(Trapezoid cellular decomposition)和Boustrophedon分解原理,详细讲解了分解过程,并提到了Morse分解、Brushfire分解法和Wave-Front分解等方法。此外,还列举了一些开源项目以供参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

全覆盖规划在机器人学领域具有重要意义,其应用场景涵盖了自动农场、扫地机器人、扫描监视无人机等多个领域。该问题的核心目标是使机器人能够从指定起点出发,规划一条避开障碍物、同时路径尽可能短的轨迹,从而实现对特定区域的全面覆盖。

在实际应用中,全覆盖规划的成功实现对于提高机器人在各类环境中的工作效率至关重要。这一问题的解决涉及到高效的路径规划和规划区域分解技术。

其中,梯形单元分解算法是一种常用分区的技术,过将地图上需要规划的区域进行分区,采用梯形分解的方式,可以更好地应对复杂环境。

全覆盖算法规划流程
环境建模->目标区域分解->子区域遍历->子区域内部全覆盖规划->漏扫区域规划。


一、梯形分解(Trapezoid cellular decomposition)原理

梯形单元分解算法(trapezoid cellular decomposition),又称基于扫描线分解,是一种用于将不规则多边形划分为简单梯形的方法,通常应用于全覆盖规划算法中对区域的划分。该算法的核心思想是通过将复杂的多边形转化为一系列相邻且相

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Travis.X

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值