细说自举电路——MOS管驱动工作原理

我们知道,MOS管是电压驱动型器件。当G极大于S极至少一个Vth时,MOS管才会导通。我们来看下面这个电路:

这里的G极是12V,但由于电阻R7流过电流时存在压降,导致G极被抬高。

一般不是低压MOS的情况下,datasheet的驱动电压用10V或者12V,在上图电路中我们将驱动电压设为G-S= 12-8.42=3.58V,3.5V同样能实现导通,但是导通电阻会很大,导致MOS管发热。

这时候,自举电容电路的用处就来啦。

首先简单解释下自举电容电路

自举是指通过开关电源MOS管(这里指上管)和电容组成的升压电路,一般通过电源对电容充电,使其电压高于Vin。

最简单的自举电路由一个电容构成,为了防止升高后的电压,会回灌到原始的输入电压,通常会加一个二极管

它的优势在于利用电容两端电压不能突变的特性来升高电压。

那么在刚刚上述的电路问题中,我们就可以用自举电容的方法来解决。

我们来看下面这个自举电路

-电容的左端为VB,即Vboost,电容的右端为VS浮地;

-C3则为自举电容;

-M为感性负载,电流向右续流。

MOS管Q开通

假设此时的自举电容C3已经充满电,为14V。

当PWM为1时,Q1实现导通,C端的电压为低,接着Q2的B端电压也为低,Q2导通;

这时Q2的E端电压为14V,经过Q2、D2、R4以后MOS管G端大概为12V,Q管(MOS)导通。在这里我们可以得知,自举电源的电压需要比MOS管驱动电压高约2V

此后Q3的B端电压高于E端,Q3则关断。

Q管导通以后,VM(电机M为感性负载)直接施加在Q管的S端,由于S端与电容的右端相连,自举电容C3右端被抬高,大概在24V。

这时 电容两端的电压无法突变,电容左边的电压同样被抬高,此时14V+24V=38V。

随后,38V电压经过Q2、D2、R4持续给Q管的G端供电。

最后便达到了Q管的S端和G端被同时抬高至24V,且Vgs=12V。

接着我们来说MOS管Q关断的情况:

当PWM变为0时,Q1断开,Q2的BE没有了电流路径,Q2就会断开。这时自举电容的泄Vgs=0,Q管则关闭。

电机M(感性负载)电流向右续流,电流通过Q管的体二极管进行续流,此时C3电容右端电压为-0.7V,无法起到升压作用。二极管D1导通,14V电源通过D1给C3电容充电,充电完成。

接着PWM从0切换为1继续循环步骤。

好了,以上就是今天的全部内容,感谢大家的关注与支持!

以上部分图片与内容来源于网络

jieba分词是一种中文分词工具,它基于Python语言实现,采用了基于前缀词典实现的分词算法。jieba分词的主要原理可以分为三个步骤:分词预处理、生成DAG图和最大概率路径计算。 1. 分词预处理 首先,jieba会对待分词的文本进行预处理,包括去除空格、制表符、换行符等无用字符,以及对数字、英文单词等进行处理,使得文本中的中文字符能够更好地被识别和分词。此外,jieba还支持用户自定义词典,用户可以将自定义的词语加入词典中,以便jieba更好地进行分词。 2. 生成DAG图 接下来,jieba会根据词典中的词语构建有向无环图(DAG),DAG中的每个节点表示一个可能的分词位置,每个节点与其后续的节点之间的有向边表示两个节点组成的词在词典中存在。DAG的生成过程采用了基于动态规划的最大前向匹配算法,通过正向匹配和反向匹配两种方式,找到所有可能的分词路径。 3. 最大概率路径计算 最后,jieba会计算所有可能的路径中,概率最大的路径作为分词结果。jieba采用了维特比算法来计算最大概率路径,通过计算每个节点的最大概率值和最大概率路径,得到整个文本的最大概率分词结果。 总的来说,jieba分词的原理比较简单,采用了基于前缀词典实现的分词算法,具有分词速度快、准确率高、支持用户自定义词典等优点。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值