TensorRT模型压缩加速原理(入门篇

转载链接:

https://www.jianshu.com/p/805b76c9d229

主要浏览一下量化部分,其他描述较少,一笔带过。

### TensorRT 优化加速原理 #### 高效的 GPU 利用率 TensorRT 是一种专门针对 GPU 设计的高度优化深度学习推理引擎,旨在最大化利用 GPU 的并行处理能力[^1]。该引擎不仅能够执行经过优化的推理图,还实现了模型的高效运行。 #### 自动与手动优化策略 为了提高性能,TensorRT 提供了两种主要的优化路径: - **全图自动优化**:当输入模型中的操作均被 TensorRT 支持时,可以直接从常见的深度学习框架(如 Caffe、TensorFlow、MXNet 或 PyTorch)加载预训练好的神经网络,并自动生成高效的推理引擎。对于特定情况下的 PyTorch 模型,还可以使用 Trtorch 进行进一步优化。此外,也可以通过 ONNX 中间表示来连接不同的前端框架到 TensorRT 后端[^2]。 - **部分图的手工/自动分图优化**:如果某些层或节点不在 TensorRT 原生支持范围内,则可以通过混合模式来进行针对性调整——即保留不受支持的部分不变的同时,将其余部分交给 TensorRT 处理以获得最佳效果。这通常涉及到重新定义这些组件之间的接口以便更好地集成进整个流水线中去。 #### 关键技术细节 具体来说,在实际部署过程中,TensorRT 实现了一系列关键技术手段来确保高性能表现: - **内核融合**:将多个连续的小规模运算合并成单一大规模运算单元,减少内存访问次数从而加快速度; - **精度裁剪**:允许用户选择 FP32 (浮点数), FP16 (半精度),甚至 INT8 (整数) 来平衡准确性和效率之间关系; - **批量化处理**:通过对一批数据同时做预测而不是逐条记录单独计算的方式显著降低单位时间内所需资源消耗; - **异步调用机制**:充分利用多核心架构优势,使 CPU 和 GPU 能够并发工作而不必等待对方完成当前任务后再继续下一步骤。 ```python import tensorrt as trt def build_engine(onnx_file_path): TRT_LOGGER = trt.Logger(trt.Logger.WARNING) with trt.Builder(TRT_LOGGER) as builder, \ builder.create_network() as network, \ trt.OnnxParser(network, TRT_LOGGER) as parser: config = builder.create_builder_config() # Set optimization profile and precision mode here with open(onnx_file_path, 'rb') as model: if not parser.parse(model.read()): print('Failed to parse the ONNX file.') for error in range(parser.num_errors): print(parser.get_error(error)) return None engine = builder.build_serialized_network(network, config) return engine ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值