效果如下:
原理:
以常见的普通正方形小方块表现的马赛克为例,首先将图片进行格子划分为N*N个小方块.然后每个小方块的颜色则取该方块中心点位置的颜色值.代码上的目标就是某个小块内的uv值都修改为本小块的中心点的uv值.
关键代码:
i.uv.x = round(i.uv.x / _Factor) * _Factor;
i.uv.y = round(i.uv.y / _Factor) * _Factor;
round(x) 四舍五入, 为了让周围的像素取中心点的颜色值. _Factor范围大小的参数,表现上就是马赛克色块的大小.
比如_Factor = 0.01
正常情况下 UV的范围是 [0-1]
当 u = 0.02 时
round(u / _Factor) * _Factor = 0.02
当u=0.014时
round(u / _Factor) * _Factor = round(1.4) * _Factor = 1 * _Factor = 0.01;
当u=0.019时:
round(u / _Factor) * _Factor = round(1.9) * _Factor = 2 * _Factor = 0.02;
当 u= 0.024时
round(u / _Factor) * _Factor = round(2.4) * _Factor = 2 * _Factor = 0.02;
当 u= 0.025时:
round(u / _Factor) * _Factor = round(2.5) * _Factor = 3 * _Factor = 0.03;
可以看出,当u= 0.02 ± 0.05 时,即处于[0.015, 0.024]的区间中,经过上面的四舍五入,最终结果其实就是0.02,就可以达到我们想要的周围一定范围内的颜色值都取中心点颜色值,就能达到马赛克那种一个一个色块的需求.而这个色块的大小,也就是这里的区间范围,则由_Factor参数控制,区间范围就是_Factor,也就是±_Factor/2
完整代码:
//马赛克
Shader "Vitens/Mosaic"
{
Properties
{
_MainTex ("Texture", 2D) = "white" {}
_Factor("Factor", range(0.0001,0.2)) = 0.05
}
SubShader
{
Tags {
"IgnoreProjector" = "True"
"Queue" = "Transparent"
"RenderType" = "Transparent"
}
Pass
{
cull off
CGPROGR
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
struct appdata
{
float4 vertex : POSITION;
float2 uv : TEXCOORD0;
};
struct v2f
{
float2 uv : TEXCOORD0;
float4 vertex : SV_POSITION;
};
sampler2D _MainTex;
float4 _MainTex_ST;
fixed _Factor;
v2f vert (appdata v)
{
v2f o;
o.vertex = UnityObjectToClipPos(v.vertex);
o.uv = v.uv;
return o;
}
fixed4 frag (v2f i) : SV_Target
{
//round(x) 四舍五入, 为了让周围的像素取中心点的颜色值. _Factor范围大小的参数,表现上就是马赛克色块的大小
i.uv.x = round(i.uv.x / _Factor) * _Factor;
i.uv.y = round(i.uv.y / _Factor) * _Factor;
return tex2D(_MainTex, i.uv);
}
ENDCG
}
}
}
强迫症优化:
有一个不完美的地方在于 左下角起始的位子的方格并不是正常方块大小,而是1/4大小,是因为最开始的区间是[-_Factor/2,_Factor/2],UV缺少了负的那一半。
可以先进行_Factor/2的偏移,将区间变成从[0,_Factor],修改如下:
i.uv.x = round((i.uv.x + _Factor / 2) / _Factor) * _Factor - _Factor / 2;
i.uv.y = round((i.uv.y + _Factor / 2) / _Factor) * _Factor - _Factor / 2;
现在舒服多了,不过右边和上面就没办法了,毕竟不能保证一定能够均分,只是保证了从左下角开始的地方就满足均分罢了。