amcl 代码研究(6)——pf(1)

前面分析了KD_Tree, 现在研究粒子滤波pf:

//一个粒子, 表示位姿和权重

// Information for a single sample
typedef struct
  // Pose represented by this sample
  pf_vector_t pose;

  // Weight for this pose
  double weight;
} pf_sample_t;

// Information for a cluster of samples
typedef struct
  // Number of samples
  int count;                                //粒子数目

  // Total weight of samples in this cluster
  double weight;                      //粒子的总权重

  // Cluster statistics
  pf_vector_t mean;                //统计量
  pf_matrix_t cov;

  // Workspace
  double m[4], c[2][2];
} pf_cluster_t;

// Information for a set of samples
typedef struct _pf_sample_set_t
  // The samples
  int sample_count;                           //粒子数目
  pf_sample_t *samples;                   

  // A kdtree encoding the histogram
  pf_kdtree_t *kdtree;

  // Clusters
  int cluster_count, cluster_max_count;
  pf_cluster_t *clusters;

  // Filter statistics
  pf_vector_t mean;
  pf_matrix_t cov;
  int converged; 
} pf_sample_set_t;
// Information for an entire filter
typedef struct _pf_t
  // This min and max number of samples
  int min_samples, max_samples;

  // Population size parameters
  double pop_err, pop_z;
  // The sample sets.  We keep two sets and use [current_set]
  // to identify the active set.
  int current_set;
  pf_sample_set_t sets[2];

  // Running averages, slow and fast, of likelihood
  double w_slow, w_fast;

  // Decay rates for running averages
  double alpha_slow, alpha_fast;

  // Function used to draw random pose samples
  pf_init_model_fn_t random_pose_fn;                            //初始化随机粒子的函数
  void *random_pose_data;

  double dist_threshold; //distance threshold in each axis over which the pf is considered to not be converged
  int converged; 
} pf_t;

// Function prototype for the initialization model; generates a sample pose from
// an appropriate distribution.
typedef pf_vector_t (*pf_init_model_fn_t) (void *init_data);

// Function prototype for the action model; generates a sample pose from
// an appropriate distribution
typedef void (*pf_action_model_fn_t) (void *action_data, 
                                      struct _pf_sample_set_t* set);

// Function prototype for the sensor model; determines the probability
// for the given set of sample poses.
typedef double (*pf_sensor_model_fn_t) (void *sensor_data, 
                                        struct _pf_sample_set_t* set);
// Create a new filter
pf_t *pf_alloc(int min_samples, int max_samples,
               double alpha_slow, double alpha_fast,
               pf_init_model_fn_t random_pose_fn, void *random_pose_data);

// Free an existing filter
void pf_free(pf_t *pf);
// Initialize the filter using a guassian
void pf_init(pf_t *pf, pf_vector_t mean, pf_matrix_t cov);

// Initialize the filter using some model
void pf_init_model(pf_t *pf, pf_init_model_fn_t init_fn, void *init_data);

// Update the filter with some new action
void pf_update_action(pf_t *pf, pf_action_model_fn_t action_fn, void *action_data);
// Update the filter with some new sensor observation
void pf_update_sensor(pf_t *pf, pf_sensor_model_fn_t sensor_fn, void *sensor_data);

// Resample the distribution
void pf_update_resample(pf_t *pf);

// Compute the CEP statistics (mean and variance).
void pf_get_cep_stats(pf_t *pf, pf_vector_t *mean, double *var);

// Compute the statistics for a particular cluster.  Returns 0 if
// there is no such cluster.
int pf_get_cluster_stats(pf_t *pf, int cluster, double *weight,
                         pf_vector_t *mean, pf_matrix_t *cov);

//calculate if the particle filter has converged - 
//and sets the converged flag in the current set and the pf 
int pf_update_converged(pf_t *pf);

//sets the current set and pf converged values to zero
void pf_init_converged(pf_t *pf);