【负荷预测】基于CEEMDAN-LSTM的负荷预测研究(Python代码实现)

                                       💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、CEEMDAN与LSTM的结合优势

三、研究内容与方法

四、研究结果与验证

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于CEEMDAN(Complementary Ensemble Empirical Mode Decomposition,互补集合经验模态分解)与LSTM(Long Short-Term Memory Network,长短期记忆神经网络)的负荷预测研究,是一种结合了信号分解技术与深度学习算法的有效预测方法。这种方法在电力、燃气等能源领域的负荷预测中展现出较高的应用价值。以下是对该研究的详细分析:

一、研究背景与意义

负荷预测对于能源供应的稳定性、经济效益的提升以及市场的合理规划具有重要意义。传统的负荷预测方法往往存在拟合效果差、预测精度低等问题,特别是在面对复杂多变的负荷数据时。因此,研究更加精确、高效的负荷预测模型具有重要意义。

二、CEEMDAN与LSTM的结合优势

  1. CEEMDAN的优势
    • 信号分解:CEEMDAN是一种先进的信号分解技术,能够将复杂的负荷序列分解为多个本征模态函数(IMF)分量,这些分量代表了负荷数据在不同频率尺度下的特征信息。
    • 降噪与去冗余:通过CEEMDAN分解,可以有效地去除负荷数据中的噪声和冗余信息,提高数据的质量。
    • 模态分离:不同IMF分量之间的独立性使得它们可以单独进行预测,避免了信息之间的互相干扰。
  2. LSTM的优势
    • 时间序列建模:LSTM是一种特别适合处理时间序列数据的神经网络,能够捕捉数据中的长期依赖关系。
    • 记忆能力:LSTM通过其独特的“门”结构(遗忘门、输入门、输出门)实现了对历史信息的有效记忆和遗忘,从而提高了预测的准确性。

三、研究内容与方法

  1. 数据预处理:首先,对原始负荷数据进行清洗和预处理,包括去除异常值、填补缺失值等。

  2. CEEMDAN分解:利用CEEMDAN算法对预处理后的负荷数据进行分解,得到多个IMF分量。

  3. LSTM建模:针对每个IMF分量,分别建立LSTM预测模型进行训练。在训练过程中,可以通过调整LSTM网络的超参数(如隐藏层数、神经元个数、学习率等)来优化模型的预测性能。

  4. 预测结果集成:将各个IMF分量的LSTM预测结果进行叠加重构,得到最终的负荷预测值。

四、研究结果与验证

通过实际案例的验证,基于CEEMDAN-LSTM的负荷预测模型通常能够表现出较高的预测精度和稳定性。与其他预测模型相比,该模型在抑制模态混叠、减小重构误差、提升预测精度等方面具有显著优势。

五、结论与展望

基于CEEMDAN-LSTM的负荷预测研究为能源领域的负荷预测提供了一种新的思路和方法。未来,随着深度学习技术的不断发展和完善,该方法有望在更多领域得到广泛应用和推广。同时,针对不同类型的负荷数据(如电力负荷、燃气负荷等),可以进一步探索和优化CEEMDAN-LSTM模型的参数设置和预测策略,以进一步提高预测精度和泛化能力。

📚2 运行结果

部分代码:

table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典.

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]肖白,高文瑞.基于CEEMDAN-LSTM的空间负荷预测方法[J].电力自动化设备, 2023, 43(3):7.

[2]郭权杰.基于CEEMDAN-LSTM模型的短期负荷预测研究与应用[D].天津理工大学,2023.

[3]冯建强,宋昆仑.基于CEEMDAN-LSTM的桥梁变形时间序列预测研究[J].地理空间信息, 2023, 21(7):40-43.

[4]王清亮,代一凡,王旭东,等.基于ICEEMDAN-LSTM-BNN的短期光伏发电功率概率预测[J].西安科技大学学报, 2023, 43(3):593-602.

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

你可以使用Python实现Ceemdan-LSTM模型。首先,你需要安装一些必要的库,如numpy、scipy、matplotlib和tensorflow等。然后,你可以按照以下步骤实现Ceemdan-LSTM模型: 1. 导入所需的库: ```python import numpy as np import scipy.signal as sg import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras.layers import LSTM, Dense ``` 2. 定义Ceemdan函数: ```python def ceemdan(signal, max_iter): IMF = [] for _ in range(max_iter): # 计算信号的均值 mean = np.mean(signal) # 提取极大值点 maxima = sg.argrelextrema(signal, np.greater)[0] # 提取极小值点 minima = sg.argrelextrema(signal, np.less)[0] # 创建上包络线和下包络线 upper = sg.spline(maxima, signal[maxima], np.arange(len(signal))) lower = sg.spline(minima, signal[minima], np.arange(len(signal))) # 计算平均包络线 avg_env = (upper + lower) / 2 # 计算细节信号 detail = signal - avg_env # 判断是否满足停止条件 if np.sum(detail ** 2) < 0.01 * np.sum(signal ** 2): IMF.append(detail) break IMF.append(detail) signal = detail return IMF ``` 3. 定义Ceemdan-LSTM模型的类: ```python class CeemdanLSTM: def __init__(self, max_iter, num_units, num_layers): self.max_iter = max_iter self.num_units = num_units self.num_layers = num_layers self.model = None def fit(self, X_train, y_train, epochs, batch_size): # 进行CEEMDAN分解 IMF = ceemdan(X_train, self.max_iter) # 创建训练数据 X_train_imf = np.concatenate(IMF[:-1], axis=1) y_train_imf = IMF[-1] # 构建LSTM模型 self.model = tf.keras.Sequential() self.model.add(LSTM(self.num_units, return_sequences=True, input_shape=(X_train_imf.shape[1], X_train_imf.shape[2]))) for _ in range(self.num_layers-1): self.model.add(LSTM(self.num_units, return_sequences=True)) self.model.add(LSTM(self.num_units)) self.model.add(Dense(1)) # 编译和训练模型 self.model.compile(loss='mean_squared_error', optimizer='adam') self.model.fit(X_train_imf, y_train_imf, epochs=epochs, batch_size=batch_size) def predict(self, X_test): # 进行CEEMDAN分解 IMF = ceemdan(X_test, self.max_iter) # 创建测试数据 X_test_imf = np.concatenate(IMF[:-1], axis=1) # 预测结果 y_pred_imf = self.model.predict(X_test_imf) # 进行反变换 y_pred = np.sum(y_pred_imf, axis=1) return y_pred ``` 这样,你就定义了一个Ceemdan-LSTM模型的类,可以使用`fit`方法训练模型并使用`predict`方法进行预测。你可以根据自己的需求调整Ceemdan分解的迭代次数(`max_iter`)、LSTM的神经元个数(`num_units`)和层数(`num_layers`)等参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值