【风电功率预测】【多变量输入单步预测】基于BiTCN-SVM的风电功率预测研究(Matlab代码实现)

                         💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、BiTCN与SVM简介

三、基于BiTCN-SVM的风电功率预测步骤

四、BiTCN-SVM在风电功率预测中的优势

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于BiTCN-SVM(双向时间卷积神经网络与支持向量机结合)的风电功率预测研究,结合了BiTCN在特征提取方面的优势与SVM在分类与回归问题中的强大能力,旨在提高风电功率预测的准确性。以下是对该研究的详细探讨:

一、研究背景与意义

风电功率的准确预测对于电力系统的稳定运行、能源管理和市场交易至关重要。然而,风电功率受多种因素影响,如风速、风向、温度、湿度以及机组本身的运行状态等,使得预测过程变得复杂。因此,探索一种能够综合考虑多变量输入并实现单步预测的风电功率预测方法具有重要意义。

二、BiTCN与SVM简介

  1. BiTCN(双向时间卷积神经网络)
    • BiTCN是一种特殊的卷积神经网络,它通过双向结构(即前向和后向两个方向的卷积层)来捕捉时间序列数据中的前后文信息。这种结构使得BiTCN能够更全面地理解时间序列数据的动态变化,从而提取出更有价值的特征。
    • 在风电功率预测中,BiTCN可以从风速、风向、温度等多变量输入数据中提取出与风电功率变化相关的特征,为后续的预测提供有力支持。
  2. SVM(支持向量机)
    • SVM是一种基于统计学习理论的监督学习算法,它在解决分类和回归问题中表现出色。SVM通过寻找最优超平面来将不同类别的数据分开(在回归问题中则是寻找最优拟合线或面),并利用支持向量(即离超平面最近的数据点)来确定模型的边界。
    • 在风电功率预测中,SVM可以利用BiTCN提取的特征来建立预测模型,并通过优化算法求解模型参数,从而实现风电功率的准确预测。

三、基于BiTCN-SVM的风电功率预测步骤

  1. 数据收集与预处理
    • 收集风电场的历史功率数据和相关的气象数据(如风速、风向、温度等)。
    • 对数据进行清洗和预处理,包括去除异常值、处理缺失值、数据标准化等步骤,以确保数据的准确性和一致性。
  2. 特征提取
    • 使用BiTCN从预处理后的数据中提取有用的特征。BiTCN的双向结构能够同时考虑时间序列数据的前向和后向信息,从而提取出更全面的特征表示。
  3. 构建SVM模型
    • 基于提取的特征构建SVM预测模型。选择合适的核函数和正则化参数等超参数来优化模型的性能。
  4. 模型训练与验证
    • 使用训练集数据对BiTCN-SVM模型进行训练。通过优化算法调整模型参数,使得预测结果更加接近实际值。
    • 使用验证集数据对模型进行验证,评估模型的预测精度和泛化能力。可以采用多种评价指标(如MAE、MAPE、RMSE等)来全面评估模型的性能。
  5. 预测与结果分析
    • 使用训练好的BiTCN-SVM模型对未来一段时间内的风电功率进行预测。
    • 对预测结果进行分析,比较实际值与预测值之间的差异,并探讨可能的原因和改进措施。同时,还可以根据预测结果调整电力系统的调度计划和市场交易策略等。

四、BiTCN-SVM在风电功率预测中的优势

  1. 综合多变量输入:BiTCN-SVM模型能够综合考虑风速、风向、温度等多变量输入数据,从而更全面地反映风电功率的变化规律。
  2. 高效特征提取:BiTCN的双向结构使得模型能够自动从时间序列数据中提取出有用的特征表示,减少了人工设计特征工程的复杂性和主观性。
  3. 强大预测能力:SVM作为一种经典的机器学习算法,在解决分类和回归问题中表现出色。结合BiTCN提取的特征后,SVM能够实现风电功率的准确预测。
  4. 灵活性与可扩展性:BiTCN-SVM模型具有较强的灵活性和可扩展性,可以根据实际需求调整模型结构和参数设置等。同时,该模型还可以与其他机器学习算法相结合以进一步提高预测性能。

五、结论与展望

基于BiTCN-SVM的风电功率预测研究为风电功率预测提供了一种新的思路和方法。未来研究可以进一步探索BiTCN与SVM的结合方式以及模型优化算法等方面内容,以提高风电功率预测的准确性和稳定性。同时,随着大数据和人工智能技术的不断发展,将更多先进技术引入风电功率预测领域也将成为未来的研究方向之一。

📚2 运行结果

部分代码:

% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74    0.8    0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]

% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87    0.15 712.77  684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】

% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77
% # 0.74 0.87    0.15 712.77  0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72    0.87 0.08 742.81 751.3】


function  res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
    for i = 1:num_samples
        h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
        res{i,1}= h1;
        h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
        res{i,2} = h2;
      
    end
 end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.

[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

MATLAB中使用LSTM模型进行多变量单步预测的步骤如下: 1. 数据准备:将多个变量的时间序列数据整理成适合LSTM模型输入的格式。通常情况下,数据应该是一个二维数组,其中行表示时间步,列表示变量。确保数据集包含足够数量的样本以及适当的标签。 2. 数据预处理:对数据进行标准化或归一化处理,以便在输入到LSTM之前将其缩放到一个合适的范围内。这可以通过MATLAB的标准函数或自定义函数进行实现。 3. 构建LSTM模型:在MATLAB中,可以使用深度学习工具箱来构建LSTM模型。指定模型的架构,例如输入和输出的维度,隐藏层的大小,激活函数等,并使用适当的优化算法进行训练。 4. 模型训练:使用准备好的数据集对构建好的LSTM模型进行训练。通过迭代优化算法来调整模型的权重和偏差,使其能够在训练数据上学习到相关模式和趋势。 5. 模型预测:使用模型对测试数据进行预测。将测试数据输入到训练好的LSTM模型中,通过模型的前向传播计算出预测值。 6. 结果评估:使用合适的评估指标来评估模型的预测性能,例如均方根误差(RMSE)或平均绝对百分比误差(MAPE)。根据评估结果对模型进行调整和改进。 7. 可视化结果:使用MATLAB的绘图工具,将训练和预测结果可视化展示,以便更直观地观察模型在不同变量上的预测效果。 这是一个基本的步骤框架,在实际应用中可能还需要进行更多细节的调整和优化,以使模型更加准确和可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值