【单变量输入多步预测】基于BiLSTM的风电功率预测研究(Matlab代码实现)

            💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

研究背景

BiLSTM简介

研究方法

研究挑战与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于双向长短期记忆网络(BiLSTM)的风电功率预测是一种利用深度学习技术来预测未来风电场输出功率的方法。这项研究对于电力系统的调度、优化和风电资源的有效利用至关重要。下面是对这一研究主题的一个概括性介绍:

研究背景

风能作为一种清洁可再生能源,其发电量受天气条件、地理位置等多种因素影响,具有显著的随机性和波动性。准确预测风电功率可以帮助电网运营商提前做好调度规划,减少备用容量需求,提高电网的稳定性和经济性。

BiLSTM简介

BiLSTM是长短期记忆网络(LSTM)的一种变体,能够同时考虑历史数据中的前后依赖关系。传统的LSTM仅在时间序列上进行单向传播,而BiLSTM则结合了正向LSTM和反向LSTM,可以捕获序列数据中的双向上下文信息,这对于风电功率预测这类需要综合考虑过去和未来趋势的任务尤为重要。

研究方法

  1. 数据预处理:首先,收集历史风电功率数据、气象数据(如风速、风向、气温等)作为输入特征。数据需经过清洗、缺失值处理、标准化或归一化等步骤以适应模型输入要求。

  2. 特征选择与构造:根据相关性分析,选取对风电功率预测有显著影响的特征。可能还会构造一些衍生特征,如风速的统计特征,以提高预测精度。

  3. 模型构建:设计BiLSTM模型结构,包括确定网络层数、单元数、学习率等超参数。模型输入为时间序列数据,输出为未来某一时段内的风电功率预测值。

  4. 训练与验证:将数据集划分为训练集、验证集和测试集。使用训练集对模型进行训练,并通过验证集调整模型参数以避免过拟合。常用的损失函数为均方误差(MSE)或均方根误差(RMSE),优化器可选Adam或RMSprop。

  5. 多步预测:对于风电功率的多步预测,一种策略是让模型直接输出预测序列,另一种是在单步预测的基础上进行递归预测,即用当前时刻的预测值作为下一时刻的输入。后者需要注意误差累积问题。

  6. 性能评估:使用测试集评估模型性能,常用的评价指标包括RMSE、MAE(平均绝对误差)、MAPE(平均绝对百分比误差)等。

研究挑战与展望

  • 数据质量:风力发电站的现场数据可能存在噪声和缺失,高质量的数据预处理是关键。
  • 模型复杂度与解释性:BiLSTM模型相对复杂,如何平衡模型复杂度与预测精度,以及提高模型的可解释性,是未来研究的方向之一。
  • 融合多种信息源:结合更多类型的外部数据(如卫星数据、地理信息等)和高级特征工程技术,可能进一步提升预测准确性。
  • 实时预测与自适应调整:随着智能电网的发展,实现风电功率的实时预测和模型的在线学习、自适应调整将是重要趋势。

综上所述,基于BiLSTM的风电功率预测研究是一个涉及深度学习、时间序列分析和能源领域的跨学科课题,对于促进风能的有效利用和电力系统的智能化管理具有重要意义。

📚2 运行结果

部分代码:

layers0 = [ ...
    % 输入特征
    sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置
    sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
    % CNN特征提取
    convolution2dLayer([2,1],4,'Stride',[1,1],'name','conv1')  %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
    batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
    reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
      % 池化层
    maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
    % 展开层
    sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复
    %平滑层
    flattenLayer('name','flatten')
    
    lstmLayer(25,'Outputmode','last','name','hidden1') 
    dropoutLayer(0.2,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入

    fullyConnectedLayer(outdim,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %
    regressionLayer('Name','output')    ];
    
lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');


%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 150, ...                            % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.01, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod',70, ...                   % 训练100次后开始调整学习率
    'LearnRateDropFactor',0.01, ...                    % 学习率调整因子
 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.

[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值