基于XGBoost的共享单车租赁预测研究(数据可换)(Python代码实现)

                           💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、XGBoost算法概述

三、共享单车租赁预测研究步骤

四、XGBoost在共享单车租赁预测中的优势

五、研究展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于XGBoost的共享单车租赁预测研究是一个结合了高效机器学习算法与共享单车租赁数据分析的综合性课题。以下是对该研究的详细分析:

一、研究背景与意义

随着共享经济的兴起,共享单车作为一种便捷、环保的出行方式,在全球范围内得到了广泛应用。然而,如何准确预测共享单车租赁数量,以优化车辆配置、提高运营效率,成为共享单车企业面临的重要挑战。XGBoost作为一种高效、灵活的机器学习算法,能够自动从历史数据中学习特征,捕捉复杂的非线性关系,为共享单车租赁预测提供了有力的工具。

二、XGBoost算法概述

XGBoost(Extreme Gradient Boosting)是一种基于梯度提升框架的决策树集成算法,它通过集成多个弱学习器(通常是决策树)来构建一个强学习器。XGBoost在目标函数中加入了正则项,用于控制模型的复杂度,防止过拟合。同时,XGBoost采用了多种优化技术,如特征抽样、列抽样、树剪枝等,以提高模型的泛化能力和训练速度。

三、共享单车租赁预测研究步骤

  1. 数据收集与预处理

    • 收集共享单车租赁系统的历史数据,包括租赁数量、时间信息(如日期、小时)、天气状况(如温度、湿度、风速等)、地理位置等。
    • 对数据进行清洗、去噪、归一化等预处理操作,以确保数据的质量和可用性。
  2. 特征选择与提取

    • 根据业务需求和数据特点,选择合适的特征进行提取和转换。例如,对于分类特征(如天气状况、节假日等),可以采用one-hot编码;对于连续特征(如温度、湿度等),则进行归一化处理。
    • 通过特征重要性分析等方法,筛选出对预测结果影响较大的关键特征。
  3. 模型构建与训练

    • 使用XGBoost算法构建共享单车租赁预测模型。
    • 将预处理后的数据划分为训练集和测试集,使用训练集对模型进行训练。
    • 在训练过程中,通过调整模型参数(如学习率、树的数量和深度、正则化系数等)来优化模型性能。
  4. 模型评估与优化

    • 使用测试集对训练好的模型进行评估,计算预测结果的准确率、召回率、F1分数等指标。
    • 根据评估结果对模型进行调优,包括调整模型参数、增加数据预处理步骤或尝试不同的特征组合等。
  5. 结果应用与反馈

    • 将训练并调优后的模型应用于实际场景中,为共享单车公司的运营决策提供数据支持。
    • 持续监控模型的预测性能,并根据实际情况对模型进行更新和调整。

四、XGBoost在共享单车租赁预测中的优势

  1. 高效性:XGBoost采用了多种优化技术,能够快速处理大规模数据集,提高训练速度和预测效率。
  2. 灵活性:XGBoost支持多种类型的输入数据和损失函数,能够适应不同的业务场景和需求。
  3. 准确性:XGBoost通过集成多个弱学习器来构建强学习器,能够捕捉数据中的复杂关系,提高预测的准确性。
  4. 鲁棒性:XGBoost在目标函数中加入了正则项,用于控制模型的复杂度,防止过拟合,提高模型的鲁棒性。

五、研究展望

  1. 多源数据融合:未来可以引入更多数据源(如交通流量、城市规划、人口分布等),以提高预测的准确性和全面性。
  2. 模型融合:结合其他机器学习算法(如CNN、LSTM等)的优点,构建混合模型以提高预测性能。
  3. 实时预测与调度:将预测模型与实时监控系统相结合,实现共享单车租赁数量的实时预测和动态调度,提高系统的运营效率和服务质量。

综上所述,基于XGBoost的共享单车租赁预测研究具有广阔的应用前景和重要的实践意义。通过不断优化模型结构和引入更多数据源,我们可以进一步提高预测的准确性和鲁棒性,为共享单车行业的健康发展提供有力支持。

📚2 运行结果

部分代码:

def evaluate_forecasts(Ytest, predicted_data, n_out):
    # 定义一个函数来评估预测的性能。
    mse_dic = []
    rmse_dic = []
    mae_dic = []
    mape_dic = []
    r2_dic = []
    # 初始化存储各个评估指标的字典。
    table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
    for i in range(n_out):
        # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
        actual = [float(row[i]) for row in Ytest]  #一列列提取
        # 从测试集中提取实际值。
        predicted = [float(row[i]) for row in predicted_data]
        # 从预测结果中提取预测值。
        mse = mean_squared_error(actual, predicted)
        # 计算均方误差(MSE)。
        mse_dic.append(mse)
        rmse = sqrt(mean_squared_error(actual, predicted))
        # 计算均方根误差(RMSE)。
        rmse_dic.append(rmse)
        mae = mean_absolute_error(actual, predicted)
        # 计算平均绝对误差(MAE)。
        mae_dic.append(mae)
        MApe = mape(actual, predicted)
        # 计算平均绝对百分比误差(MAPE)。
        mape_dic.append(MApe)
        r2 = r2_score(actual, predicted)
        # 计算R平方值(R2)。
        r2_dic.append(r2)
        if n_out == 1:
            strr = '预测结果指标:'
        else:
            strr = '第'+ str(i + 1)+'步预测结果指标:'
        table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]陈鑫,刘琦.基于时间序列分析的共享单车未来格局预测[J].现代营销(下旬刊), 2017(10):216-216.DOI:10.3969/j.issn.1009-2994.2017.10.174.

[2]焦志伦,金红,刘秉镰,等.大数据驱动下的共享单车短期需求预测——基于机器学习模型的比较分析[J].商业经济与管理, 2018(8):11.DOI:10.14134/j.cnki.cn33-1336/f.2018.08.002.

[3]甘明.基于深度学习的共享单车预测与调度研究[D].杭州电子科技大学,2022.

[4]靳海红,张帅.基于数据分析的共享单车模式与前景研究[J].商情, 2019.

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值