【微电网】含风、光、储联合发电的微电网优化调度研究(Matlab代码实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

含风、光、储联合发电的微电网优化调度研究

一、微电网的基本概念与组成结构

二、风-光-储联合发电系统的运行特性

三、优化调度的数学模型与算法

四、典型调度策略与案例分析

五、未来研究方向

六、结论

📚2 运行结果

2.1 场景1——春

2.2 场景2——夏 

2.3 场景3——秋

2.4 场景4——冬天

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

风力资源和光资源具有极强的不确定性,运用不当很容易出现弃风弃光的现象。目前,除了电场自身进行优化设计外,储能系统与电场的搭配被高度关注。其中抽水蓄能由于具备技术相对成熟、单位容量成本相对较低以及能实现大规模存储的优势,应用更为普遍。抽水蓄能的主要原理是在用电低峰期以贮存水的形式消纳风光过剩电能,以便在高峰时释放,从而减轻电网压力。这项技术带来的一些边际效益也增强其吸引力。比如,储存的水在紧急情况下可用于消费、灌溉和救火等。作为配合风光发电的重要途径,近年来国内外学者对此做出大量研究。

胡泽春等人[34]提出了电网消纳风电出力的新型模式。将风电-抽水蓄能联合运行,依照抽水蓄能电站的实际参数,设计实例系统。实验结果显示,抽水蓄能电站与风电 场的配合可以大大规避风电出力随机性所产生的不良影响,经济效益和社会效益显著。 Hozouri 等人[35]提供了一个组合规划模型,将抽水蓄能系统和风力发电系统联合运行, 规划的程序试图在将风能削减水平降至最低的情况下,同时将传输网的成本降到最低。 通过该研究,针对电力系统规划研究中不可避免的风电弃风成本、社会总成本和存储单元收益题,提出了一种组织良好的后向多目标优化框架。将该方法应用于改进的 IEEE 可靠性测试系统上,所得结果说明了该方法在可再生电力系统规划过程中的适 用性和有效性。黄庶等人[36]建立了风电场和抽水蓄能电站在内的电力系统动态优化调 度模型,以节能减排为目标,充分考虑各项约束条件,引入发电功率和抽水功率两个 连续变量来描述抽水蓄能机组的运行特性。结果显示,该方法能够在安全性、经济性 和环保性之间取得最优折中,减轻风电场出力随机性的影响。Khodayar 等人[37]提出 了一种风电机组和抽水蓄能机组在电力系统日前运行规划中的协调方法。抽水蓄能单 元可以存储额外的风能,提高可变风能的调度能力,并以小时为单位向电网提供固定 的能源。通过协调,抽水蓄能单元可以抵消每小时内的风能不平衡,并将风能缩减最 小化。该研究通过两个案例分析,阐明了小时内风能不平衡和抽水蓄能和风能联合协 调的概念。结果表明,所提出的风能和抽水蓄能协调方法适用于电力系统短期运行。 Papantonis等人[38]对风力发电混合动力装置抽水站机组的优化设计进行了数值研 究。标准设计中使用许多相同的泵并列运行,并通过将标准配置与其他两种配置(一 组使用变速泵,另一组使用更小的补给水泵)比较来检验。其目的是为了减少由于水 泵的功率运行限制以及泵站分段运行而导致的风能转化为水能的损失。通过采用综合 评价算法对这些装置一年的运行进行了模拟,并采用动态评价方法对装置进行了详细的经济分析。结果表明,采用变速泵是最有效、最有利可图的解决方案,且在风力发 电潜力分散较小的情况下,其优势更为明显。特别是在岛屿上,抽水蓄能的风电场极具发展潜力,岛屿面积越大,投资潜力越高。Bueno [39]通过在大加那利群岛上安装便 于管理的风力抽水蓄能系统进行检验。应用该系统的最优规模经济模型所获得的结果表明,风力抽水蓄能系统可以让可再生能源的渗透率可提高 1.93%(52.55 GW h/年), 单位能源供应成本将更具竞争力。Li 等人[40]将高容量抽水蓄能与快速响应蓄电池储 能相配合,以转化峰值负荷、响应风电爬坡、减少弃风、稳定热机组输出为目标,补偿风电与负荷的变化。针对风能、抽水蓄能和蓄电池储能混合动力系统,设计了一种 可充分利用抽水蓄能和蓄电池储能的优化运行框架。建立了抽水蓄能和蓄电池蓄能的 详细数学公式。通过三个实例验证了所提出的协调方法的优越性。 微电网是一种新型的电网结构,是一种用于按需供电的技术,微型发电技术能产 生环境、经济和社会效益,尤其在减少温室气体排放、提高发电效率、保障能源供应 和促进能源安全等方面具有重要意义。一方面,可再生能源集成到微电网系统中带来 了能源价值,并节省了燃料成本。另一方面,微电网系统可以集成多种能源和负载类 型[41],根据每种能源的特点,多种能源载体之间的相互协调可以减少或消除可再生能 源的不确定性,更有利于可再生能源的安全消费。[42]近年来对于微电网的相关研究取 得了一定的成果,Lin 等人[43]在考虑可再生能源、电池储能系统和分时电价的基础上, 提出了微电网调度策略。在风险评估中,采用历史模拟法来计算风险值。通过考虑计 算风险值的不同置信水平,建立起相应的微电网调度模型,在风险和成本之间进行平 衡。同时在并网或独立的不同场景下,依据不同的风险置信水平,进行微电网的最优 调度。仿真结果为不确定环境下微电网的风险策略分析提供了更多的信息。

含风、光、储联合发电的微电网优化调度研究

一、微电网的基本概念与组成结构

微电网是由分布式电源(如风电、光伏)、储能系统、负荷、配电设施及监控保护装置组成的小型发配电系统,具有自治性、灵活性和多能互补的特点。其核心架构分为两类:

  1. 并网型微电网:与主电网连接,可进行能量双向交换,适用于城市电网增强供电可靠性和可再生能源消纳。
  2. 独立型微电网:脱离主网运行,通过内部电源与储能实现自平衡,常用于偏远地区或岛屿供电。

典型组成

  • 电源:以风电、光伏为主,辅以燃气轮机等备用电源。分布式光伏因成本下降(2023年组件价格下降30%)成为主流选择。
  • 储能系统:承担调峰、调频、备用电源功能,需满足荷电状态(SOC)约束和充放电效率限制。
  • 电力管理系统:包括逆变器、能量管理平台(EMS),实现直流/交流转换及多能协调。
  • 负荷特性:需区分可中断负荷、可转移负荷(如电动汽车充电)与传统刚性负荷。
二、风-光-储联合发电系统的运行特性
  1. 互补性与波动性

    • 风电与光伏在时间维度上天然互补(如白天光伏强、夜间风电强),但出力仍受天气影响呈现随机性和间歇性。
    • 储能系统通过功率平滑(如低通滤波法)可将波动率降低60%以上,满足并网要求。
  2. 典型运行模式

    • 平滑功率输出:利用储能平抑分钟级功率波动,降低对电网冲击(案例:国家风光储输示范工程)。
    • 跟踪计划出力:结合日前预测数据,通过储能填补实际出力与计划值的偏差。
    • 削峰填谷:在电价低谷期充电、高峰期放电,降低运行成本(经济性提升约15%)。
    • 黑启动能力:在电网故障时快速切换至孤岛模式,保障关键负荷供电。
三、优化调度的数学模型与算法
  1. 多目标优化模型
    • 目标函数:最小化运行成本(含燃料、维护、购电成本)、最大化可再生能源利用率、最小化碳排放。
    • 约束条件
  • 功率平衡:Pgen(t)+Pdis(t)=Pload(t)+Pch(t)
  • 储能SOC限制:20%≤SOC(t)≤90%
  • 设备出力上下限。
  1. 常用算法对比

    算法类型典型代表优势局限性
    数学优化混合整数线性规划(MILP)精确解,适合小规模问题计算复杂度高
    启发式算法粒子群优化(PSO)全局搜索能力强,易并行化易陷入局部最优
    人工智能深度强化学习(DDPG)适应动态环境,在线优化需大量训练数据
    多目标优化NSGA-III高维Pareto前沿分布均匀参数调优复杂

    案例:基于DDPG的风光储系统调度模型在西北某基地应用中,弃风率降低12%,跟踪计划偏差减少8%。

  2. 不确定性建模方法

    • 场景分析法:通过蒙特卡洛模拟生成1000+场景,再经K-means聚类缩减至10个典型场景。
    • 鲁棒优化:采用min-max结构,以最恶劣场景下的成本最小为目标,保守性可调。
    • 模糊规划:将风光出力误差建模为模糊变量,结合神经网络预测误差分布。
四、典型调度策略与案例分析
  1. 发用电一体化策略

    • 策略流程
  2. 负荷代理商收集可调控负荷(如电动汽车)需求。

  3. 根据风光预测出力与负荷需求差额选择储能充放电或与主网交互。

  4. 通过多目标粒子群算法(MOPSO)优化用户侧与发电侧收益。

    • 效果:某1600MW光伏+1200MW风电+300MW储能系统中,峰谷差降低25%,用户电费满意度提升18%。
  5. 柔性负荷协同调度

    • 将可转移负荷(如工业生产线)从高峰时段转移至低谷,配合储能充放电实现负荷曲线优化。
    • 案例:某工业园区通过锂电储能与柔性负荷协同,弃光率从9%降至3%,购电成本减少12%。
  6. 国家风光储输示范工程

    • 技术亮点
  • 七种运行组态(如“风+光+储”“光+储”等)动态切换。
  • 采用U/f控制模式支撑电压频率,平滑波动后功率曲线标准差降低40%。
    • 经济性:储能配置成本占比30%,但通过参与调频市场年收益增加500万元。
五、未来研究方向
  1. 数字孪生技术:构建高精度仿真模型,实现预测-调度-校正闭环优化。
  2. 混合储能系统:结合超级电容(响应快)与锂电池(能量密度高),提升多时间尺度调节能力。
  3. 市场机制融合:探索虚拟电厂(VPP)模式下的现货市场竞价策略。
  4. 边缘计算应用:部署分布式AI算法,降低通信延迟对实时调度的干扰。
六、结论

含风-光-储的微电网优化调度需兼顾技术可行性与经济性,通过多目标优化算法、不确定性建模及柔性资源协同,可显著提升可再生能源渗透率(典型项目达80%以上)。未来随着人工智能与电力市场深化融合,微电网将向“自治化、市场化、智能化”方向发展。

📚2 运行结果

 四种场景对应春夏秋冬四种模式:

2.1 场景1——春

2.2 场景2——夏 

2.3 场景3——秋

2.4 场景4——冬天

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。(内容仅供参考,具体以运行结果为准。)

[1]吴光仡. 风光储联合发电的微电网优化调度[D].长春工业大学,2021.DOI:10.27805/d.cnki.gccgy.2021.000173.

[2]于重. 风光储联合调度系统设计及其功率平抑优化算法研究[D].东北大学,2015.

[3]龚正宇,刘继春,武云霞,安向阳,赵岩.含风光储的多微网接入配网的联合调度策略[J].可再生能源,2014,32(11):1665-1670.DOI:10.13941/j.cnki.21-1469/tk.2014.11.012.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值