👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
随着分布式电源(distributed generation,DG)的渗透率不断提高,传统的配电网系统从被动单向的
供电网络转变为功率双向流动的有源网络,使得配电网运行和控制面临诸多新挑战。依靠网络升级或运行结构变化等方法维持配电网可靠运行的成本高而且被动,将不再适用。采用主动策略来控制和管理配电网中的分布式可控资源成为系统运行方式优化以及提高可再生能源渗透率的主要手段。
2008 年,国际大电网会议(CIGRE)提出了“配电网主动运行与发展”研究主题[1],主动配电网(active
distribution network,ADN)是在主网和配网协同控制的基础上,具有分布式发电、储能和需求侧响应等电源、负荷调控手段,能够针对电力系统的实际运行状态,以安全性、经济性为调控目标,适应 调节其电源、网络及负荷的配电网。
随着 ADN 的分布式特性越来越明显,数据交互越来越多,控制方式越来越灵活,传统的集中式
控制方法已难以实现对 ADN 中多种 DG 的灵活、有效控制。近年来,国内外学者对 AND 的分布式电压无功优化控制问题展开了研究。文献[5-6]提出多时空尺度下 ADN 分布式协调控制框架,从短期区域自治和长期全局优化 2 个不同时空尺度研究了协调控制策略。此方案将分布式控制与集中式控制相结合,实现混合式优化,并未完全摆脱集中式控制束缚。多代理系统(multiple agent system,MAS)具有良好的自治性、适应性、协调性和社会性,ADN 分布式电压控制中得到应用。
ADMM 算法形式简单、收敛性好、鲁棒性强,且不要求子优化目标函数严格凸和有限,是近年来获得广泛应用的分布式数学优化方法:
一、引言
随着分布式电源(Distributed Generation,DG)渗透率的不断提高,传统的配电网系统已从被动单向的供电网络转变为功率双向流动的有源网络。这一转变使得配电网的运行和控制面临诸多新挑战。主动配电网(Active Distribution Network,ADN)作为新一代电网模式,能够实现能源的高效利用,提高可靠性,减少能源浪费,因此在现代电力系统中得到了广泛应用。然而,ADN的分布式特性越来越明显,数据交互增多,控制方式更加灵活,传统的集中式控制方法已难以实现对ADN中多种DG的灵活、有效控制。因此,采用分布式优化算法成为解决这一问题的重要途径。交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)作为一种形式简单、收敛性好、鲁棒性强的分布式数学优化方法,近年来在配电网优化中得到了广泛应用。
二、研究背景与意义
-
研究背景:
- 分布式电源的快速发展对配电网的运行和控制提出了新要求。
- 传统的集中式控制方法难以适应ADN的分布式特性。
- ADMM算法因其优越性在分布式优化问题中得到了广泛关注。
-
研究意义:
- 提出基于串行和并行ADMM算法的配电网优化方法,为配电网的优化控制提供新的思路。
- 通过分布式求解,降低计算复杂度,提高求解效率。
- 实现配电网的全局优化控制,提高系统的稳定性和可靠性。
三、ADMM算法简介
ADMM算法是一种用于解决具有可分离结构的凸优化问题的分布式算法。它将原始问题分解为多个子问题,每个子问题在各自的节点上独立求解,并通过迭代更新变量和拉格朗日乘子来实现全局优化。ADMM算法具有形式简单、收敛性好、鲁棒性强等优点,且不要求子优化目标函数严格凸和有限。
四、基于串行ADMM算法的配电网优化
在串行ADMM算法中,大问题被分解成多个小问题进行求解。每个节点根据自身的局部信息和约束条件,通过串行ADMM算法求解局部优化问题。然后,节点之间通过通信交换信息,将局部解传递给其他节点,同时接收其他节点的局部解。通过交替更新变量和拉格朗日乘子,最终实现整个配电网的全局优化控制。
五、基于并行ADMM算法的配电网优化
为了进一步提高求解效率,可以采用并行ADMM算法。在并行ADMM算法中,问题被划分成多个部分,每个部分在独立的处理器上并行计算。通过并行计算,可以显著提高算法的计算速度。同时,对并行ADMM算法进行改进,可以提高算法的收敛速度和精度。
六、仿真验证与结果分析
为了验证所提算法的有效性和可行性,通常会在MATLAB等仿真平台上进行仿真验证。通过构建配电网优化模型,设置相应的约束条件和目标函数,采用串行和并行ADMM算法进行求解。仿真结果表明,所提算法具有较高的求解精度和计算速度,能够有效地实现配电网的优化控制。
七、结论与展望
本文研究了基于串行和并行ADMM算法的配电网优化方法。通过对主动配电网无功优化控制模型的构建,提出了创新性的优化控制方法,并通过仿真验证了算法的有效性和可行性。在后续的工作中,可以进一步探究该算法在实际系统中的应用,以及与其他分布式优化算法的结合使用,为配电网的优化控制提供更加丰富的解决方案。
📚2 运行结果
本代码是较为全面的ADMM算法代码,实现了三种ADMM迭代方式,分别是:
1、普通常见的高斯-赛德尔迭代法
2、论文<基于串行和并行ADMM算法的电_气能量流分布式协同优化_瞿小斌>中的串行高斯-赛德尔迭代方法
3、论文<基于串行和并行ADMM算法的电_气能量流分布式协同优化_瞿小斌>中的并行雅克比迭代方法
程序的应用场景为参考文献<主动配电网分布式无功优化控制方法_梁俊文>中的无功优化方法,具体区域的划分可能有
细微差别,但是方法通用;
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]瞿小斌,文云峰,叶希等.基于串行和并行ADMM算法的电—气能量流分布式协同优化[J].电力系统自动化,2017,41(04):12-19.
[2]梁俊文,林舜江,刘明波.主动配电网分布式无功优化控制方法[J].电网技术,2018,42(01):230-237.DOI:10.13335/j.1000-3673.pst.2017.1331.