【无人机3D路径规划】基于非支配排序遗传算法NSGAII的无人机3D路径规划研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、引言

二、NSGAII算法原理

三、无人机3D路径规划问题建模

四、基于NSGAII的无人机3D路径规划算法实现

五、实验结果与分析

六、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

非支配排序遗传算法(NSGA)是一种多目标优化算法,旨在解决具有多个目标函数的优化问题。NSGA是在遗传算法的基础上发展而来的,它通过一种称为"非支配排序"的策略,将解空间中的个体分为不同的等级,并通过交叉和变异等遗传操作来搜索适应于多个目标的优质解。NSGA首先对种群中的个体进行非支配排序,即根据个体之间的优劣关系将其划分为多个不同的前沿等级。一个个体如果在某个目标函数上优于另一个个体且不劣于另一个个体,则认为它是非支配的。这样,种群中的个体就被划分为多个前沿等级,每个等级中的个体都不受其他等级中个体的支配。NSGA的特点在于能够有效地搜索多目标优化问题的帕累托前沿,即所有最优解构成的集合。它在解决具有多个相互竞争目标的复杂优化问题时表现出色,已被广泛应用于工程设计、资源分配、机器学习等领域。

一、引言

无人机路径规划是无人机自主飞行中的关键任务之一,对于提高飞行效率、确保飞行安全具有重要意义。在3D空间中,无人机路径规划需要考虑更多的约束条件,如空间障碍、飞行高度限制等。因此,采用有效的算法进行3D路径规划至关重要。非支配排序遗传算法NSGAII作为一种多目标优化算法,在解决复杂优化问题中表现出色,被广泛应用于工程设计、资源分配等领域。本文将研究基于NSGAII的无人机3D路径规划方法。

二、NSGAII算法原理

NSGAII是在遗传算法的基础上发展而来的,它通过一种称为“非支配排序”的策略,将解空间中的个体分为不同的等级,并通过交叉和变异等遗传操作来搜索适应于多个目标的优质解。NSGAII的特点在于能够有效地搜索多目标优化问题的帕累托前沿,即所有最优解构成的集合。

在NSGAII中,首先需要对种群中的个体进行非支配排序,即根据个体之间的优劣关系将其划分为多个不同的前沿等级。然后,通过选择、交叉、变异等遗传操作生成新的解,并利用非支配排序和拥挤度来维护种群的多样性和收敛性。通过不断迭代和进化,NSGAII能够逐步改进解的质量,找到更好的解方案。

三、无人机3D路径规划问题建模

无人机3D路径规划问题可以转化为一个多目标优化问题,其目标函数和约束条件如下:

  1. 目标函数:可能包括路径长度、飞行时间、能耗、避障能力等多个目标。这些目标之间可能存在冲突,需要找到一组最优解,使得这些目标之间达到最好的平衡。
  2. 约束条件:包括空间障碍、飞行高度限制、无人机性能限制等。这些约束条件需要被充分考虑,以确保规划出的路径是可行且安全的。

四、基于NSGAII的无人机3D路径规划算法实现

基于NSGAII的无人机3D路径规划算法的实现步骤如下:

  1. 问题建模:将无人机路径规划问题转化为多目标优化问题,并定义目标函数和约束条件。
  2. 算法实现:实现NSGAII算法,包括选择合适的遗传操作(如交叉、变异等)、非支配排序和拥挤度计算等。
  3. 路径表示:设计合适的路径表示方法,例如用一系列的航点表示路径。
  4. 适应度函数:根据路径的目标值计算适应度,以评估路径的优劣。
  5. 遗传操作:通过交叉和变异等遗传操作生成新的解。
  6. 非支配排序:对种群中的个体进行非支配排序,确定帕累托最优解集合。
  7. 进化迭代:迭代地应用遗传操作和非支配排序,直到收敛到满意的解集合或达到迭代次数上限。
  8. 结果分析:对NSGAII得到的路径解进行评估和比较,选择最优解或者提供决策支持。

五、实验结果与分析

通过实验验证基于NSGAII的无人机3D路径规划算法的有效性。实验可以设置不同的场景和约束条件,以测试算法的适应性和鲁棒性。对实验结果进行分析,评估算法的性能和优缺点,并提出改进方向。

六、结论与展望

总结基于NSGAII的无人机3D路径规划算法的研究成果和贡献。同时,展望未来的研究方向和发展趋势,如算法优化、实时性提升、应用场景拓展等。

总之,基于NSGAII的无人机3D路径规划算法为无人机在复杂环境中的路径规划提供了一种有效的解决方案。通过不断优化和改进算法,可以进一步提高无人机的自主飞行能力和应用范围。

📚2 运行结果

部分代码:

function [ f1 ] = NSGA2_fitness1( dna)
%NSGA2_FITNESS1 Summary of this function goes here
%本函数计算航路长度代价
dnanum=size(dna,1);          %种群数目
dnalength=size(dna,2)-1;     %有几段?相当于种群中的个体为点,点与点之间依次相连有多少条线段,因此要减1
f1=zeros(dnanum,1);          %每段对应的航路长度代价
for i=1:1:dnanum
    f1(i,1)=0;
    for j=1:1:dnalength
        d(1)=(dna(i,j+1,1)-dna(i,j,1))*10;
        d(2)=(dna(i,j+1,2)-dna(i,j,2))*10;  % *10是因为每小段又划分为10格?
        d(3)=dna(i,j+1,3)-dna(i,j,3);
        d=d.^2;
        f1(i,1)=f1(i,1)+sqrt(d(1)+d(2)+d(3));
        %i个体数目
    end
end

%   Detailed explanation goes here
 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]王广生,孙祎峥,孙海军,等.内河船舶尾气监测的多无人机路径规划研究[J].港口航道与近海工程,2024,61(01):93-98.DOI:10.16403/j.cnki.ggjs20240118.

[2]卢颖,庞黎晨,陈雨思,等.一种面向城市战的无人机路径规划群智能算法[J].兵工学报,2023,44(S2):146-156.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值