浅谈曲线坐标系SL

       SL坐标系也叫做frenet frame,以道路中心线为参考,S表示道路中心线的方向,L表示与道路中心线垂直的方向。
在结构化道路上行驶的时候,SL坐标系比XY坐标系更加贴合实际需求。 SL坐标系到XY坐标系
因为很多信息是全局的,所以要投影到世界坐标系,例如红绿灯位置,参考的是XY世界坐标系。
在给定SL坐标系时,每一个点的S坐标本身对应一个(x-r,y-r)坐标,根据该点的横向偏移距离,可以求出给定点在世界坐标系中的XY位置,如下图所示。其中theta是参考线的方向,也就是切线方向。如果XY与S方向平行的话,轨迹的曲率还满足图中所示的关系。


XY坐标系到SL坐标系
因为SL坐标系并不是唯一的,XY会在曲线上产生很多投影,投影点是经过XY坐标,且垂直于曲线的线段与曲线的交点,如下图所示,XY就有两个投影点。通常情况下会增加一些限制,例如投影距离不能超曲率值。需要注意的是,掉头的时候还是需要特殊处理的。

  

参考资源链接:[Apollo自动驾驶规划技术解析:曲线平滑与Smoothing Spline](https://wenku.csdn.net/doc/3emd08x4jt?utm_source=wenku_answer2doc_content) 在自动驾驶领域,为了确保车辆的行驶轨迹既安全又平滑,往往会采用Bezier Spline和Smoothing Spline技术进行路径规划。首先,了解SL坐标系对实现平滑路径至关重要。SL坐标系由弧长(S)和横向偏差(L)组成,允许路径规划在曲率连续的基础上实现。 Bezier Spline技术可以通过定义一系列控制点来生成曲线。控制点的位置直接影响曲线的形状和平滑度。在实际应用中,根据所需的平滑程度选择合适阶数的Bezier Spline。例如,二阶Bezier Spline能够保证曲率连续,但可能不会通过所有中间控制点,适用于简单的路径规划。 Smoothing Spline技术则用于优化路径,通过最小化曲率的变化来获得平滑的轨迹。它通过求解一个优化问题,来找到一条既能满足约束条件又能使曲线的三阶导数(即曲率)最小化的路径。这种方法尤其适用于简单的起点和终点约束条件,但当路径中存在障碍物或其他复杂环境因素时,可能需要更高级的处理技术。 在应用这些技术时,首先需要将环境中的障碍物、车辆动态和路径规划要求转换为数学模型。然后,结合SL坐标系对轨迹进行建模,并利用控制点定义初步的Bezier Spline曲线。接着,应用Smoothing Spline技术对路径进行优化,确保在起点和终点的约束下,曲线尽可能平滑。如果遇到复杂环境,可以采用分段多项式技术,将路径分割为多个部分,并分别对每个部分应用多项式插值,这样可以更灵活地处理障碍物和环境约束。 通过结合以上技术,自动驾驶车辆可以生成既平滑又安全的行驶轨迹。对于更深入的理解和应用,推荐阅读《Apollo自动驾驶规划技术解析:曲线平滑与Smoothing Spline》。这本书详细解析了Apollo系统中的规划技术,特别是曲线平滑和多项式插值的实际应用案例,对于希望深入学习自动驾驶规划技术的读者来说,是一份宝贵的资源。 参考资源链接:[Apollo自动驾驶规划技术解析:曲线平滑与Smoothing Spline](https://wenku.csdn.net/doc/3emd08x4jt?utm_source=wenku_answer2doc_content)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值