深度学习Week13——利用TensorFlow实现咖啡豆识别

文章目录
深度学习Week13——利用TensorFlow实现咖啡豆识别
一、前言
二、我的环境
三、前期工作
1、配置环境
2、导入数据
四、数据预处理
1、加载数据
2、可视化数据
3、检查数据
4、配置数据集
五、构建VGG-16模型
六、编译模型
七、训练模型
八、预测与评估
1、Accuracy图
九、拓展

一、前言

本篇内容分为两个部分,前面部分是学习K同学给的算法知识点以及复现,后半部分是自己的拓展与未解决的问题

二、我的环境

  • 电脑系统:Windows 10
  • 语言环境:Python 3.8.0
  • 编译器:Pycharm2023.2.3
    深度学习环境:TensorFlow
    显卡及显存:RTX 3060 8G

三、前期工作

1、导入库并配置环境

from tensorflow       import keras
from tensorflow.keras import layers,models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow        as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")
    
gpus

这一步与pytorch第一步类似,我们在写神经网络程序前无论是选择pytorch还是tensorflow都应该配置好gpu环境(如果有gpu的话)

2、 导入数据

导入所有好莱坞明星照片数据,依次分别为训练集图片(train_images)、训练集标签(train_labels)、测试集图片(test_images)、测试集标签(test_labels),数据集来源于K同学啊的网盘:数据集

data_dir = "E:\Deep_Learning\Data\Week7"

data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob('*/*.jpg')))

print("图片总数为:",image_count)

#查看第一张图片:
roses = list(data_dir.glob('Dark/*.png'))
PIL.Image.open(str(roses[0]))

图片总数为: 1800
在这里插入图片描述

四、数据预处理

1、加载数据

batch_size = 32
img_height = 224
img_width = 224

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

tf.keras.preprocessing.image_dataset_from_directory()会将文件夹中的数据加载到tf.data.Dataset中,且加载的同时会打乱数据。

  • class_names
  • validation_split: 0和1之间的可选浮点数,可保留一部分数据用于验证。
  • subset: training或validation之一。仅在设置validation_split时使用。
  • seed: 用于shuffle和转换的可选随机种子。
  • batch_size: 数据批次的大小。默认值:32
  • image_size: 从磁盘读取数据后将其重新调整大小。默认:(256,256)。由于管道处理的图像批次必须具有相同的大小,因此该参数必须提供。
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

输出:

Found 1200 files belonging to 4 classes.
Using 960 files for training.
  1. 验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
  2. 但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。
  3. 因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

输出:

Found 1200 files belonging to 4 classes.
Using 240 files for validation.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)

[‘Dark’, ‘Green’, ‘Light’, ‘Medium’]

2、数据可视化

# 查看前20个图片
plt.figure(figsize=(20, 10))

for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

在这里插入图片描述

3、再次检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

(32, 224, 224, 3)
(32,)
Image_batch是形状的张量(32,224,224,3)。这是一批形状224x224x3的32张图片(最后一维指的是彩色通道RGB。
Label_batch是形状(32,)的张量,这些标签对应32张图片

4、配置数据集

  • shuffle():打乱数据
  • prefetch():预取数据,加速运行
  • cache():将数据集缓存到内存当中,加速运行

如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态:
使用前
使用prefetch()可显著减少空闲时间:
在这里插入图片描述

AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

normalization_layer = layers.experimental.preprocessing.Rescaling(1./255)

train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
val_ds   = val_ds.map(lambda x, y: (normalization_layer(x), y))

image_batch, labels_batch = next(iter(val_ds))
first_image = image_batch[0]

# 查看归一化后的数据
print(np.min(first_image), np.max(first_image))
0.0 1.0

五 、构建VGG-16模型

  1. 输入层:
    输入层负责接收原始数据,将数据传递到网络中的第一层。
  2. 卷积层:
    卷积层使用卷积核对输入数据进行滤波操作,以提取图像中的特征。
  3. 池化层:
    池化层用于对卷积层的输出进行下采样,以减少数据的维度和计算量。
  4. 全连接层:
    全连接层起到“特征提取器”的作用,将前面层的特征表示映射到输出层。
  5. 输出层:
    输出层负责输出模型的预测结果。

结构说明:

  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示
  • 3个全连接层(Fully connected Layer),分别用fcXpredictions表示
  • 5个池化层(Pool layer),分别用blockX_pool表示

VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16
在这里插入图片描述
在这里插入图片描述

model = tf.keras.applications.VGG16(weights='imagenet')
model.summary() # 打印模型
Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/vgg16/vgg16_weights_tf_dim_ordering_tf_kernels.h5
553467096/553467096 [==============================] - 124s 0us/step
Model: "vgg16"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_1 (InputLayer)        [(None, 224, 224, 3)]     0         
                                                                 
 block1_conv1 (Conv2D)       (None, 224, 224, 64)      1792      
                                                                 
 block1_conv2 (Conv2D)       (None, 224, 224, 64)      36928     
                                                                 
 block1_pool (MaxPooling2D)  (None, 112, 112, 64)      0         
                                                                 
 block2_conv1 (Conv2D)       (None, 112, 112, 128)     73856     
                                                                 
 block2_conv2 (Conv2D)       (None, 112, 112, 128)     147584    
                                                                 
 block2_pool (MaxPooling2D)  (None, 56, 56, 128)       0         
                                                                 
 block3_conv1 (Conv2D)       (None, 56, 56, 256)       295168    
                                                                 
 block3_conv2 (Conv2D)       (None, 56, 56, 256)       590080    
                                                                 
 block3_conv3 (Conv2D)       (None, 56, 56, 256)       590080    
                                                                 
 block3_pool (MaxPooling2D)  (None, 28, 28, 256)       0         
                                                                 
 block4_conv1 (Conv2D)       (None, 28, 28, 512)       1180160   
                                                                 
 block4_conv2 (Conv2D)       (None, 28, 28, 512)       2359808   
                                                                 
 block4_conv3 (Conv2D)       (None, 28, 28, 512)       2359808   
                                                                 
 block4_pool (MaxPooling2D)  (None, 14, 14, 512)       0         
                                                                 
 block5_conv1 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_conv2 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_conv3 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_pool (MaxPooling2D)  (None, 7, 7, 512)         0         
                                                                 
 flatten (Flatten)           (None, 25088)             0         
                                                                 
 fc1 (Dense)                 (None, 4096)              102764544 
                                                                 
 fc2 (Dense)                 (None, 4096)              16781312  
                                                                 
 predictions (Dense)         (None, 1000)              4097000   
                                                                 
=================================================================
Total params: 138357544 (527.79 MB)
Trainable params: 138357544 (527.79 MB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________

六、编译模型

具体函数解释参考第八周博客或者K同学啊的博客!

1.设置动态学习率

# 设置初始学习率
initial_learning_rate = 1e-4

lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate, 
        decay_steps=30,      # 敲黑板!!!这里是指 steps,不是指epochs
        decay_rate=0.92,     # lr经过一次衰减就会变成 decay_rate*lr
        staircase=True)

# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate)

model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

七、训练模型

网络越来越复杂,对算力要求也更高,使用GPU来跑都慢

epochs = 20

history = model.fit(train_ds,
                    validation_data=val_ds,
                    epochs=epochs,
                    callbacks=[checkpointer, earlystopper])

八、预测

1、Accuracy图与Loss图

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

结果:
在这里插入图片描述

九、拓展

自己构建VGG-16模型

首先,导入了必要的模块:layers, models, tensorflow.keras库的模块,用于构建神经网络模型。

其次,定义函数VGG16(nb_classes, input_shape),接受两个参数:类别:nb_classes和形状 input_shape 表示输入数据的形状。
通过Input函数创建了一个输入张量input_tensor,形状为input_shape按照VGG16的结构,定义卷积层和池化层:
使用 ReLU 作为激活函数,让卷积层分布在不同的block中,每个block中有若干个卷积层,每个block之间有一个池化层。每个卷积层后面跟着一个池化层,通过MaxPooling2D函数实现。
在所有卷积和池化层之后,添加了全连接层:
通过Flatten层将卷积层输出的特征图展平成一维向量。
然后通过两个Dense层定义包含4096个神经元的全连接层,每个层包含4096个神经元,并使用 ReLU 作为激活函数。

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout

def VGG16(nb_classes, input_shape):
    input_tensor = Input(shape=input_shape)
    # 1st block
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)
    # 2nd block
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)
    # 3rd block
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)
    # 4th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)
    # 5th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)
    # full connection
    x = Flatten()(x)
    x = Dense(4096, activation='relu',  name='fc1')(x)
    x = Dense(4096, activation='relu', name='fc2')(x)
    output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)

    model = Model(input_tensor, output_tensor)
    return model

model=VGG16(len(class_names), (img_width, img_height, 3))
model.summary()

输出:

Model: "model"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_2 (InputLayer)        [(None, 224, 224, 3)]     0         
                                                                 
 block1_conv1 (Conv2D)       (None, 224, 224, 64)      1792      
                                                                 
 block1_conv2 (Conv2D)       (None, 224, 224, 64)      36928     
                                                                 
 block1_pool (MaxPooling2D)  (None, 112, 112, 64)      0         
                                                                 
 block2_conv1 (Conv2D)       (None, 112, 112, 128)     73856     
                                                                 
 block2_conv2 (Conv2D)       (None, 112, 112, 128)     147584    
                                                                 
 block2_pool (MaxPooling2D)  (None, 56, 56, 128)       0         
                                                                 
 block3_conv1 (Conv2D)       (None, 56, 56, 256)       295168    
                                                                 
 block3_conv2 (Conv2D)       (None, 56, 56, 256)       590080    
                                                                 
 block3_conv3 (Conv2D)       (None, 56, 56, 256)       590080    
                                                                 
 block3_pool (MaxPooling2D)  (None, 28, 28, 256)       0         
                                                                 
 block4_conv1 (Conv2D)       (None, 28, 28, 512)       1180160   
                                                                 
 block4_conv2 (Conv2D)       (None, 28, 28, 512)       2359808   
                                                                 
 block4_conv3 (Conv2D)       (None, 28, 28, 512)       2359808   
                                                                 
 block4_pool (MaxPooling2D)  (None, 14, 14, 512)       0         
                                                                 
 block5_conv1 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_conv2 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_conv3 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_pool (MaxPooling2D)  (None, 7, 7, 512)         0         
                                                                 
 flatten (Flatten)           (None, 25088)             0         
                                                                 
 fc1 (Dense)                 (None, 4096)              102764544 
                                                                 
 fc2 (Dense)                 (None, 4096)              16781312  
                                                                 
 predictions (Dense)         (None, 4)                 16388     
                                                                 
=================================================================
Total params: 134276932 (512.23 MB)
Trainable params: 134276932 (512.23 MB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________

再进行训练后的结果为:
Epoch 1/20
30/30 [] - 350s 12s/step - loss: 1.2732 - accuracy: 0.3396 - val_loss: 1.0613 - val_accuracy: 0.5042
Epoch 2/20
30/30 [
] - 345s 12s/step - loss: 0.7579 - accuracy: 0.6385 - val_loss: 0.7859 - val_accuracy: 0.5875
Epoch 3/20
30/30 [] - 345s 12s/step - loss: 0.5615 - accuracy: 0.7312 - val_loss: 0.5375 - val_accuracy: 0.7708
Epoch 4/20
30/30 [
] - 346s 12s/step - loss: 0.4541 - accuracy: 0.8177 - val_loss: 0.2172 - val_accuracy: 0.9208
Epoch 5/20
30/30 [] - 346s 12s/step - loss: 0.2854 - accuracy: 0.8990 - val_loss: 0.2677 - val_accuracy: 0.8875
Epoch 6/20
30/30 [
] - 347s 12s/step - loss: 0.1397 - accuracy: 0.9615 - val_loss: 0.1139 - val_accuracy: 0.9500
Epoch 7/20
30/30 [] - 349s 12s/step - loss: 0.0786 - accuracy: 0.9760 - val_loss: 0.1361 - val_accuracy: 0.9542
Epoch 8/20
30/30 [
] - 347s 12s/step - loss: 0.1082 - accuracy: 0.9604 - val_loss: 0.1560 - val_accuracy: 0.9458
Epoch 9/20
30/30 [] - 346s 12s/step - loss: 0.1542 - accuracy: 0.9427 - val_loss: 0.0899 - val_accuracy: 0.9583
Epoch 10/20
30/30 [
] - 345s 12s/step - loss: 0.0674 - accuracy: 0.9771 - val_loss: 0.1207 - val_accuracy: 0.9500
Epoch 11/20
30/30 [] - 345s 12s/step - loss: 0.0906 - accuracy: 0.9729 - val_loss: 0.0790 - val_accuracy: 0.9708
Epoch 12/20
30/30 [
] - 346s 12s/step - loss: 0.1257 - accuracy: 0.9531 - val_loss: 0.1498 - val_accuracy: 0.9500
Epoch 13/20
30/30 [] - 350s 12s/step - loss: 0.0890 - accuracy: 0.9698 - val_loss: 0.0828 - val_accuracy: 0.9625
Epoch 14/20
30/30 [
] - 346s 12s/step - loss: 0.0833 - accuracy: 0.9708 - val_loss: 0.0794 - val_accuracy: 0.9792
Epoch 15/20
30/30 [] - 345s 12s/step - loss: 0.0708 - accuracy: 0.9833 - val_loss: 0.0811 - val_accuracy: 0.9708
Epoch 16/20
30/30 [
] - 345s 12s/step - loss: 0.0901 - accuracy: 0.9646 - val_loss: 0.2803 - val_accuracy: 0.8958
Epoch 17/20
30/30 [] - 345s 12s/step - loss: 0.1145 - accuracy: 0.9740 - val_loss: 0.1020 - val_accuracy: 0.9667
Epoch 18/20
30/30 [
] - 346s 12s/step - loss: 0.1251 - accuracy: 0.9656 - val_loss: 0.0977 - val_accuracy: 0.9625
Epoch 19/20
30/30 [] - 346s 12s/step - loss: 0.0904 - accuracy: 0.9688 - val_loss: 0.2341 - val_accuracy: 0.9083
Epoch 20/20
30/30 [
] - 358s 12s/step - loss: 0.1015 - accuracy: 0.9677 - val_loss: 0.0894 - val_accuracy: 0.9708

在这里插入图片描述

  • 11
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
你好!对于心脏病预测的问题,使用循环神经网络(RNN)是一种常见的方法。RNN适用于处理序列数据,而心电图信号就是一种序列数据。在使用RNN进行心脏病预测时,你可以将心电图信号作为输入序列,然后通过训练RNN模型来预测患者是否患有心脏病。 首先,你需要准备一个合适的数据集,其中包含心电图信号和相应的心脏病标签。可以使用公开的心电图数据集,如PTB数据库或MIT-BIH数据库。然后,你可以对数据进行预处理和特征工程,如数据清洗、滤波、降采样等。 接下来,你可以构建一个RNN模型。RNN模型由一系列循环层组成,每个循环层都会处理一个时间步的输入数据。你可以选择不同类型的RNN单元,如简单循环单元(SimpleRNN)、长短期记忆网络(LSTM)或门控循环单元(GRU)。通过添加适当的全连接层和激活函数,你可以将RNN模型输出映射到二分类问题(有或无心脏病)的结果。 然后,你可以使用训练集对RNN模型进行训练,并使用验证集进行模型调优。在训练过程中,你可以使用适当的损失函数(如交叉熵)和优化算法(如随机梯度下降)来最小化模型的预测误差。 最后,你可以使用测试集对训练好的模型进行评估,并计算模型的性能指标,如准确率、精确率、召回率等。这些指标可以帮助你评估模型的预测能力和泛化能力。 需要注意的是,心脏病预测是一个复杂的医学问题,仅仅使用心电图信号可能不能得到准确的预测结果。通常情况下,还需要结合其他患者的临床信息和医学知识来进行综合评估。因此,在进行心脏病预测时,建议与专业医生合作,并遵循相关的医学准则和规范。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值