1. 定位与核心能力
- Qwen-2.5(阿里云):
通用型大语言模型,擅长多模态处理(文本、图像、音频等)和超长上下文支持(最高支持 100万token)。 - DeepSeek-V3(深度求索):
通用型模型,采用混合专家架构(MoE),总参数 6710亿(每次激活370亿),训练成本仅 557.6万美元,注重高性价比和低延迟。 - DeepSeek-R1(深度求索):
专精复杂逻辑推理(数学、代码生成、金融分析等),通过强化学习(RL)训练,支持思维链输出,适合需要透明推理过程的场景。
2. 架构与技术创新
- Qwen-2.5:
采用 分组查询注意力(GQA) 和 双块注意力(DCA) 技术,提升长文本处理效率;支持 多阶段强化学习,优化输出质量。 - DeepSeek-V3:
结合 多头隐式注意力(MLA) 和 多令牌预测 技术,推理延迟降低至传统模型的 1/4;通过 FP8混合精度 降低训练成本。 - DeepSeek-R1:
基于 GRPO算法(群组相对策略优化)实现低成本强化学习,支持 模型蒸馏(如14B/70B版本),本地部署友好。
3. 应用场景
- Qwen-2.5:适合多语言翻译、长文档生成、企业级客服等通用场景。
- DeepSeek-V3:适用于高吞吐代码补全、内容创作、多模态任务处理,API成本低(输入$0.14/百万tokens)。
- DeepSeek-R1:专攻科研计算、算法交易策略生成、复杂数学问题求解,性能对标OpenAI的顶级推理模型。
4. 开源与商业化
- Qwen-2.5:部分模型开源(如32B/72B版本),但 Qwen2.5-Max 为闭源商业版。
- DeepSeek系列:
-
- V3:完全开源,支持FP8和BF16推理,适配AMD GPU和华为升腾NPU。
- R1:开源权重(MIT协议),提供蒸馏版本,适合中小规模部署。
5. 性能对比
基准测试 | Qwen2.5-72B | DeepSeek-V3 | DeepSeek-R1 |
MATH-500 | 72.6% | 90.2% | 97.3% |
Codeforces Elo | 1930 | 1950 | 2029 |
MMLU-Pro | 75.9% | 75.9% | 90.8% |
总结:
- 需要通用多模态能力选 Qwen-2.5;
- 追求性价比和通用性选 DeepSeek-V3;
- 专注复杂逻辑推理场景必选 DeepSeek-R1。