Unity2D时间和帧率

当前的代码中,帧数越高,同一时间内,执行Update的次数越多,角色移动速度越快。

如果游戏以每秒60帧的速度运行,那么Ruby将移动0.1-60,因此每秒移动6个单位。但是,如果游戏以每秒10帧的速度运行,就像刚刚让游戏运行的那样,那么Ruby仅移动0.1-10,因此每秒移动1个单位!

如果一个玩家的计算机非常陈旧,只能以每秒30帧的速度运行游戏,而另一个玩家的计算机能以每秒120帧的速度运行游戏,那么这两个玩家的主角的移动速度会有很大的差异。这样就会使游戏的难易程度提高或降低,具体取决于运行游戏的计算机。

而帧数是由硬件水平影响的(越高越好),不同的电脑中,会导致游戏效果完全1不同

可以锁帧,但并不推荐

 //在第一帧更新之前调用Start
 private void Start()
 {
     //只有将垂直同步计数设置为0,才能锁帧,否则锁帧的代码无效
     //垂直同步的作用就是显著减少游戏画面撕裂,跳帧,因为画面的渲染不是整个画面一同渲染的而是逐行或逐列渲染的
     QualitySettings.vSyncCount = 0;
     //设定应用程序帧数为
     Application.targetFrameRate = 10;
 }

 //每帧调用一次Update
 void Update()
 {
     float horizontal = Input.GetAxis("Horizontal");
     float vertical = Input.GetAxis("Vertical");
     Vector2 position = transform.position;
     position.x = position.x + 0.1f * horizontal;
     position.y = position.y + 0.1f * vertical;
     transform.position = position;
   

以上代码可实现锁帧。

(在硬件能达到的情况下,锁帧会降低画面效果。)

要解决此问题,你需要以单位/秒来表示Ruby的移动速度,而不是单位/帧。

为此,你需要通过将移动速度乘以Unity渲染一帧所需的时间来更改移动速度。如果游戏以每秒10帧的速度运行,则每帧耗时0.1秒。如果游戏以每秒60帧的速度运行,则每帧耗时0.017秒。如果将移动速度乘以改时间值,则移动速度将以秒表示。

//将速度暴露出来,使其可调
public float speed = 0.1f;


//每帧调用一次Update
void Update()
{
    float horizontal = Input.GetAxis("Horizontal");
    float vertical = Input.GetAxis("Vertical");
    Vector2 position = transform.position;
    position.x = position.x + speed * horizontal * Time.deltaTime;
    position.y = position.y + speed * vertical * Time.deltaTime;
    transform.position = position;
   
}

Time.deltaTime 每帧的时间间隔,float类型

一般将这个值,用在Update方法中,乘以移动的距离(或角度),用来获取恒定(不同硬件水平的电脑间)的速度

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值