- 、安装python环境
清华镜像 https://mirrors.tuna.tsinghua.edu.cn下载 python3.10版本安装包,并安装
- 安装pytorch
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 -c pytorch
- 安装基础库
# Base ------------------------------------------------------------------------
pip install gitpython
pip install ipython # interactive notebook
pip install matplotlib>=3.2.2
pip install numpy>=1.18.5
pip install opencv-python>=4.1.1
pip install opencv-contrib-python (如果需要用主模块和contrib模块,使用这个命令安装)
pip install Pillow>=7.1.2
pip install psutil # system resources
pip install PyYAML>=5.3.1
pip install requests>=2.23.0
pip install scipy>=1.4.1
pip install thop>=0.1.1 # FLOPs computation
pip install torch>=1.7.0 # see https://pytorch.org/get-started/locally (recommended)
pip install torchvision>=0.8.1
pip install tqdm>=4.64.0
# pip install protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012
这段代码是一个要求文件(通常是 requirements.txt
),用于安装一个项目所需的Python库和模块,主要是为YOLOv5(一个目标检测模型)设置环境。
-
gitpython
- 功能: 允许通过Python脚本与Git仓库交互,比如克隆、提交和推送代码。
-
ipython
- 功能: 提供了一个增强的交互式Python解释器,适合在Jupyter Notebook中使用,以便进行数据分析和可视化。
-
matplotlib>=3.2.2
- 功能: 用于创建静态、动态或交互式的图形,可用于可视化数据。
-
numpy>=1.18.5
- 功能: 提供支持大型多维数组和矩阵的数学函数,以及对这些数组进行操作的工具。
-
opencv-python>=4.1.1
- 功能: OpenCV库的Python接口,支持图像处理、计算机视觉功能。
-
Pillow>=7.1.2
- 功能: Python图像处理库,支持打开、操作和保存多种格式的图像。
-
psutil
- 功能: 提供获取系统与进程信息的功能,能够监视系统资源(如CPU、内存)使用情况。
-
PyYAML>=5.3.1
- 功能: 一个用于解析和生成YAML格式的库,常用于配置文件的读取。
-
requests>=2.23.0
- 功能: 用于发送HTTP请求的库,能够简化与网络资源的交互。
-
scipy>=1.4.1
- 功能: 基于NumPy的科学计算库,提供许多数学算法和方便的函数。
-
thop>=0.1.1
- 功能: 用于计算模型的浮点运算数量(FLOPs),这在模型优化和性能提升中非常重要。
-
torch>=1.7.0
- 功能: PyTorch库,支持深度学习相关的计算,广泛应用于机器学习和深度学习模型的构建。
-
torchvision>=0.8.1
- 功能: PyTorch的图像处理库,常用于数据增强、图像加载以及一些标准化的视觉任务。
-
tqdm>=4.64.0
- 功能: 提供进度条功能的库,方便在长时间运行的循环中显示处理进度。
-
protobuf<=3.20.1
- 功能: 用于序列化结构数据的库,通常用于网络通信和数据存储(此行被注释掉,说明可能是可选项)。
这段代码的主要功能是列出YOLOv5项目所需的Python库及其版本要求。这些库提供了图像处理、科学计算、系统监控、模型构建与计算等多种功能,为进行目标检测及相关实验提供了基础环境。通过执行 pip install -r requirements.txt
,用户可以一键安装所有必要的库。
- 日志相关库
# Logging ---------------------------------------------------------------------
pip install tensorboard>=2.4.1
# pip install clearml>=1.2.0
# pip install comet
这段代码是一个文本文件中的注释部分,主要用来列出与日志记录相关的库和工具及其版本要求。我们逐步分解并详细解释这些内容。
-
注释行:
# Logging ---------------------------------------------------------------------
这一行是对代码的一个分类注释,表示接下来的内容与“日志记录”有关。注释可以帮助开发者理解代码结构和目的。
-
TensorBoard:
tensorboard>=2.4.1
这一行要求安装
TensorBoard
库,版本必须为 2.4.1 或更高。TensorBoard
是 TensorFlow 提供的可视化工具,用于显示模型训练过程中的各种信息,如损失值和准确率的变化。它能够帮助开发者更好地理解模型的训练和调试过程。 -
ClearML(注释掉的):
# clearml>=1.2.0
这一行被注释掉,表明当前不需要这个库,但如果启用,则要求安装
ClearML
库,版本需要为 1.2.0 或更高。ClearML
是一个用于实验管理的工具,可以帮助记录和追踪机器学习实验的各种参数和结果。 -
Comet(注释掉的):
# comet
这一行同样被注释掉,表示暂时不需要使用
Comet
。Comet
是一个用于机器学习实验跟踪的平台,可以记录、比较和共享实验相关的信息。
这段代码主要列出了与机器学习模型训练过程中的日志记录相关的库和工具。它要求使用 TensorBoard
进行可视化,并提到其他可能的工具如 ClearML
和 Comet
,尽管它们目前被注释掉,不参与实际的代码执行。其主要功能是确保在机器学习实验中可以有效地记录和可视化模型训练的过程和结果,以便于调试和优化。
- 处理数据与绘图相关
# Plotting --------------------------------------------------------------------
pandas>=1.1.4
seaborn>=0.11.0
这段代码是一个依赖项的声明,通常用在 Python 项目的 requirements.txt
文件中。下面逐步分解并详细解释这段代码的构成和功能:
-
注释部分:
# Plotting --------------------------------------------------------------------
CopyInsert
这一行是一个注释,用于说明接下来的依赖项模块与“绘图”(Plotting)相关。这种注释帮助开发者快速了解每一部分依赖的作用。
-
依赖项:
pandas>=1.1.4
CopyInsert
这一行声明了一个名为
pandas
的库,并指定其版本号要求为1.1.4
或者更高版本。pandas
是一个强大的数据分析和操作库,适用于处理表格数据和时间序列数据。 -
依赖项:
seaborn>=0.11.0
CopyInsert
这一行声明了一个名为
seaborn
的库,并指定其版本号要求为0.11.0
或者更高版本。seaborn
是一个基于matplotlib
的数据可视化库,提供了更为美观和简洁的绘图功能,适用于绘制统计图形。
这段代码主要功能是声明项目所需的两个库:pandas
和 seaborn
,并明确了它们的版本要求。pandas
主要用于数据处理和分析,而 seaborn
则用于生成统计图表和数据可视化。这两个库的结合使得开发者能高效地处理数据并进行可视化分析,适用于数据科学和机器学习等领域。
- 导出数据格式相关
# Export ----------------------------------------------------------------------
coremltools>=6.0 # CoreML export
onnx>=1.9.0 # ONNX export
onnx-simplifier>=0.4.1 # ONNX simplifier
nvidia-pyindex # TensorRT export
nvidia-tensorrt # TensorRT export
scikit-learn<=1.1.2 # CoreML quantization
tensorflow>=2.4.1 # TF exports (-cpu, -aarch64, -macos)
tensorflowjs>=3.9.0 # TF.js export
openvino-dev # OpenVINO export
这段代码主要是一个依赖清单,用于指定在进行模型导出时所需的库和工具。下面是逐步分解和详细解释每一行代码的内容:
-
coremltools>=6.0
这是一个用于将机器学习模型导出到Apple的Core ML格式的库。Core ML使得在iOS和macOS设备上部署机器学习模型更加高效和简单。 -
onnx>=1.9.0
ONNX(开放式神经网络交换)是一个开放格式,用于深度学习模型的共享。这个库允许用户将训练好的模型转换为ONNX格式,从而在不同的深度学习框架之间进行转移。 -
onnx-simplifier>=0.4.1
这个库用于简化ONNX模型,使得模型更小、更易于推理。简化通常会删除冗余的操作,从而提高推理速度。 -
nvidia-pyindex
这是一个用于设置nvidia相关Python库的索引,它会使得用户能够安装NVIDIA官方提供的一些加速库和工具。 -
nvidia-tensorrt
TensorRT是NVIDIA的高性能深度学习推理优化器和运行时库。它能够通过优化模型以更快速地运行,特别适用于NVIDIA GPU。 -
scikit-learn<=1.1.2
Scikit-learn是一个广泛使用的机器学习库,这里指定的版本用于处理CoreML量化。量化是将模型的浮点数转换为低精度格式,以降低内存需求和计算负担。 -
tensorflow>=2.4.1
TensorFlow是一个流行的深度学习框架,这里指定的是一个版本,用于将模型导出为TensorFlow格式,以支持多种平台,包括CPU和特定架构(如aarch64和macOS)。 -
tensorflowjs>=3.9.0
TensorFlow.js是一个用于在浏览器和Node.js中运行机器学习模型的库。此条目允许将模型导出为可以在Web应用中使用的格式。 -
openvino-dev
OpenVINO是英特尔的深度学习模型优化和推理工具包,用户可以使用它将模型导出到OpenVINO格式,从而优化其在英特尔硬件上的推理性能。
这段代码中列出了多个用于导出和优化机器学习模型的库和工具。主要功能是支持不同格式的模型导出,包括Core ML、ONNX、TensorFlow、TensorFlow.js和OpenVINO等,旨在使模型能够在多种平台上高效运行,同时优化推理性能。
- 扩展功能库
# Deploy ----------------------------------------------------------------------
tritonclient[all]~=2.24.0
# Extras ----------------------------------------------------------------------
mss # screenshots
albumentations>=1.0.3
pycocotools>=2.0 # COCO mAP
roboflow
ultralytics # HUB https://hub.ultralytics.com
这段代码是YOLOv5的requirements.txt
文件中的一部分,主要用于列出所需的Python库和其版本,以支持模型的部署和额外功能。下面是逐步分解和详细解释。
-
部署相关库
tritonclient[all]~=2.24.0
- 这个库是NVIDIA的Triton推理服务器的客户端工具包,版本为
2.24.0
。 tritonclient
用于与Triton推理服务器进行交互,支持从远程服务器获取模型推理结果,实现模型的在线部署和服务。
- 这个库是NVIDIA的Triton推理服务器的客户端工具包,版本为
-
扩展功能库
mss # screenshots
mss
是一个用于截屏的库,可以方便地在Python中进行屏幕截图操作。
albumentations>=1.0.3
CopyInsert
albumentations
是一个图像数据增强库,版本要求为1.0.3
及以上,用于提高模型在训练过程中的泛化能力。
pycocotools>=2.0 # COCO mAP
pycocotools
是用于处理COCO数据集的Python工具库,版本要求为2.0
及以上。其主要功能包括计算在COCO数据集上评估模型性能所需的mAP(mean Average Precision)。
roboflow
roboflow
是一个工具,提供了数据管理、标注和模型训练的解决方案,帮助用户轻松使用和分享数据集。
ultralytics # HUB https://hub.ultralytics.com
ultralytics
是YOLOv5模型的开发团队,提供了个性化的工具和库,用于模型训练、推理和部署。此外,提到了它们的HUB链接,用户可以访问来获取更多资源和支持。
这段代码的主要功能是列出YOLOv5项目在部署阶段所需的依赖库以及一些额外的功能库。这些库涵盖了从模型的在线服务、数据增强、评估工具到屏幕截图等多种用途,使得开发者能够高效地使用和部署YOLOv5模型。通过这些库的组合,用户可以轻松管理数据集、提高模型表现,并进行性能评估。
- 安装出现问题
常见问题有如下几个问题:
WARNING: Ignore distutils configs in setup.cfg due to encoding errors.
我的解决办法
1、用 vscode 打开 setup.cfg 文件,可以看到,全文除了几个 单引号是非英文的,其他的字符都是 英文字符。而且从 vscode 的右下角可以看到,该文件就是 UTF-8 编码的。
2、将 setup.cfg 中的 非英文单引号 改为 英文单引号,如下图所示:
3、再次执行:pip install -r requirements.txt ,可以看到,警告已经没有了。
- pip install nvidia-pyindex nvi-tesnsorrt 无法安装
如果你在尝试使用 pip install nvidia-pyindex
时遇到错误,这可能由几个不同的原因引起。nvidia-pyindex
是 NVIDIA 提供的一个用于访问 NVIDIA PyPI 索引的实用工具,主要用于安装 NVIDIA 的 Python 包,如 CUDA 工具包。以下是一些可能帮助你解决问题的步骤:
-
检查 Python 和 pip 版本:
确保你的 Python 和 pip 版本是最新的,或者至少是兼容nvidia-pyindex
的版本。NVIDIA 的包通常要求较新的 Python 版本。python --version pip --version
如果需要,你可以使用以下命令更新 pip:
python -m pip install --upgrade pip
-
使用正确的 Python 版本:
如果你的系统中有多个 Python 版本,确保你使用的是 NVIDIA 包支持的版本。有时,pip
命令可能链接到错误版本的 Python。你可以尝试使用python -m pip install nvidia-pyindex
来确保使用正确的 Python 解释器。 -
查看错误信息:
仔细查看pip
返回的错误信息。它可能会提供关于问题的更多线索,比如网络问题、权限问题或依赖问题。 -
网络问题:
确保你的计算机可以访问外部网络,特别是 NVIDIA 的 PyPI 服务器。如果你的网络设置了代理或防火墙,确保它们不会阻止访问 PyPI。 -
尝试使用 --user 选项:
如果你没有系统级的安装权限,可以尝试使用--user
选项来在用户目录下安装包:pip install --user nvidia-pyindex
-
检查 NVIDIA PyPI 服务器状态:
有时 NVIDIA 的 PyPI 服务器可能遇到问题。检查是否有关于服务器状态的官方通知或社交媒体上的讨论。 -
使用虚拟环境:
创建一个 Python 虚拟环境可以避免很多与包管理相关的问题。你可以使用venv
或conda
来创建一个环境,然后在这个环境中尝试安装nvidia-pyindex
。使用
venv
:python -m venv myenv
source myenv/bin/activate # 在 Windows 上使用 myenv\Scripts\activate
pip install nvidia-pyindex
-
查看是否有替代方法:
如果你的目的是安装 NVIDIA 的某个特定包(如numba-cuda
或cupy
),检查这些包的文档,看看是否有不需要nvidia-pyindex
的安装方法。
如果上述步骤都不能解决问题,你可能需要具体查看错误信息,并在相关的社区或论坛中寻求帮助。
- export.py ImportError: cannot import name 'tarfile' from 'backports'
pip install -U --user --pre astroquery
pip install -U --user keyring