YOLACT 是首个实现实时实例分割的模型(2019年提出),其核心思想是将分割任务分解为原型生成和掩模系数预测两个并行分支,最后通过线性组合生成实例掩模。以下是其关键设计与技术实现:
论文:[1904.02689] YOLACT: Real-time Instance Segmentation
源码:GitHub - dbolya/yolact: A simple, fully convolutional model for real-time instance segmentation.