【自动驾驶】浅学一下BEV目标检测记录

现在BEV与OCC占用网络非常火,在日常工作中,如果没有接触到,可能会忽略相应的知识储备。本人还未看大量文献,所以只能算浅学下记录,这里主要从互联网上学习到的,还是就是跟专业的同事请教之后,自己总结的。

1.BEV视角

BEV视觉其实是全局俯视图,更好的得到其他障碍物到自车的横纵向距离。在2D检测的时候,对于深度(其他障碍物离自车的纵向距离)估计不是很准。

2.BEV数据标签

        我们知道BEV视觉下一般需要输入几个相机的数据,以前2D目标检测标注,直接在图像上标注就可以了,标注一个2D或者3D框,也可以根据点云标注其深度信息(其他障碍物离自车的纵向距离)。对于2D目标检测中,超出图像区域的是可以只标注部分的。

(1)BEV目标检测中,对于出现在两个图像上的数据怎么标注呢?是在图像上标注还是如何标注?

        答案是,在lidar上进行标注,然后根据lidar到ego的标定位置转换关系,将其转到ego坐标系下,就可以作为标签了。

(2)纯视觉是输入image?image系怎么与ego标签对应?

        我们知道BEV输入的是image,是同一时刻批次的对应的多个相机数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聿默

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值