全基因组SNP分型(Whole Genome SNP Genotyping)分析简介
全基因组SNP分型
单核苷酸多态性(single nucleotide polymorphism,SNP)是遗传学研究中重要的材料。近年来,全基因组SNP标记开发方法的发展使得研究者们能够以较低成本获得丰富的基因组标记,大大推动了基因组水平的相关研究。基因组预测从已知基因型数据和表型数据的个体建立训练模型,对未知表型的个体进行基因型和表型预测,在疾病研究领域具有重要意义。全基因组基因分型能提供整个基因组的概况,使全基因组范围内的发现和关联研究成为可能。利用高通量新一代测序(NGS)和芯片技术,研究人员可以更深入地了解基因组,从而探知遗传变异的功能性后果。
目前,基于芯片的全基因组关联分析(GWAS)已成为识别全基因组范围内疾病相关性常用的方法。虽然全基因组芯片技术可以对每份样本检测超过400万个标记,但是仅针对已知的变异有效,对新变异的检测并不理想。NGS提供了一种更为全面的方法,它是一种无偏倚的变异检测方法,它不用考虑事先的预期,对人类基因组的32亿对碱基进行逐一检测。如全外显子组及全基因组测序是用于检测罕见或复杂疾病研究中致病变异的常用方法。
全基因组基因分型的优势
相比于微阵列芯片分型,全基因组SNP分型有以下优势:
- 提供全面的基因组视图。
- 在全基因组范围内检测单核苷酸多态性(SNP)和其他变异。
- 可以为今后的靶向研究鉴定潜在的致病性变异。
- 最大限度地减少了内容限制,扩大了探索范围。
应用领域:
群体研究:全基因组SNP分型可用于开展群体规模的基因分型研究,检测大规模群体中的常见遗传变异。
疾病基础研究:快速筛查大量样本,发现与复杂疾病相关的致病变异。
动植物基因分型:使用有助于育种决策的筛选和发现工具来提升作物和畜群的价值。