Single Cell——轨迹分析(Monocle3)

monocle3

Monocle 3包提供了分析单细胞基因表达实验的工具包。

Monocle3和Monocle2并没有本质上的区别,只是把降维图从DDRTree改成了UMAP。原因可能是包的作者认为UMAP比DDRTree降维更能反映高维空间的数据。

monocle3的三个主要功能:

  • 分群、计数细胞
  • 构建细胞轨迹
  • 差异表达分析

细胞聚类及鉴定亚群

安装包

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
# 一些依赖包
bioc_pkgs <- c('BiocGenerics', 'DelayedArray', 'DelayedMatrixStats',
                       'limma', 'S4Vectors', 'SingleCellExperiment',
                       'SummarizedExperiment')
for (bpkg in bioc_pkgs){
   
  if (! require(bpkg,character.only=T) ) {
   
    BiocManager::install(bpkg,ask = F,update = F)
    require(bpkg,character.only=T)
    }
}
 
# (可选)如果要在细胞聚类时设定分辨率参数(resolution),就要安装一个python包
install.packages("reticulate")
reticulate::py_install("louvain")
# 现在安装3版本,还是要通过github
devtools::install_github('cole-trapnell-lab/monocle3')
# 重启Rstudio,检测是否成功
library(Seurat)
library(monocle3)
library(tidyverse)
library(patchwork)
library(ggplot2)
library(dplyr)

加载数据

  • expression_matrix 是一个行为基因,列为细胞样本的表达矩阵
  • cell_metadata 是一个数据框,行为细胞,列是细胞的属性(比如细胞类型、培养环境、培养时间等)
  • gene_metadata是一个数据框,行为feature信息(比如基因),列是基因属性(比如GC含量)

必须要满足:

  1. expression_matrix的行与gene_metadata的行对应
  2. expression_matrix的列与cell_metadata的行对应
# 下载数据(如果已经有了,可以跳过)
expression_matrix <- readRDS(url("http://staff.washington.edu/hpliner/data/cao_l2_expression.rds"))
cell_metadata <- readRDS(url("http://staff.washington.edu/hpliner/data/cao_l2_colData.rds"))
gene_annotation <- readRDS(url("http://staff.washington.edu/hpliner/data/cao_l2_rowData.rds"))
 
# 加载、探索数据
expression_matrix <- readRDS(file = 'cao_l2_expression.rds')
cell_metadata <- readRDS(file = 'cao_l2_colData.rds')
gene_annotation <- readRDS(file = 'cao_l2_rowData.rds')
 
dim(expression_matrix)
expression_matrix[1:3,1:3]
cell_metadata[1:3,1:3]
head(gene_annotation)

将数据存储在cell_data_set对象中

# 创建CDS(Cell Data Set)对象
cds <- new_cell_data_set(expression_matrix,
                                   cell_metadata = cell_metadata,
                                   gene_metadata = gene_annotation)
cds 

cds

数据预处理

# 对数据进行规范化和预处理
# 对数据进行规范化和预处理
cds <- preprocess_cds(cds, num_dim = 100) #大约2 mins
plot_pc_variance_explained(cds)

pca_component
我们可以看到,使用超过100台PC只会捕获少量额外的变化,并且每增加一台PC都会使Monocle的下游步骤变慢。

降低维度并可视化细胞

可以使用t-SNE,这在单细胞rna测序中非常流行,或者使用UMAP。Monocle 3默认使用UMAP,它更适合于RNA-seq中的聚类和轨迹分析。调用reduce_dimension()将数据的维数降低到X, Y平面,以便我们可以轻松地绘制它,请:

# umap降维
cds <- reduce_dimension(cds, preprocess_method = "PCA",reduction_method = c("UMAP"))

plot_cells(cds)

umap

图中的每个点都代表cds对象中的不同细胞,可以看到不同的细胞分成了不同的群,有的群有几千个细胞,有的群只有少数几个,我们这里直接使用测试数据中做好的细胞标记

# 数据中一共提供了30类细胞(细胞类型及数量见:)
table(colData(cds)$"cao_cell_type")
# 根据这个上色
plot_cells(cds, color_cells_by="cao_cell_type")
# (另外除了用cao_cell_type细胞类型,还能用下面的任意一个)
colnames(colData(cds))

可以看到图中许多细胞类型再UMAP结果中靠的很近
cao_cell_type
根据基因表达量进行映射:

#根据基因表达量进行映射
plot_cells(cds, genes=c("cpna-2", "egl-21", "ram-2", "inos-1"))

gene

使用tSNE方法降维的话:

#进行tSNE降维
cds <- reduce_dimension(cds, reduction_method="tSNE")
# 然后对tSNE结果可视化
plot_cells(cds, reduction_method="tSNE", color_cells_by="cao_cell_type")

SNE

其实可以看到,tSNE结果的各个细胞亚群内部的关联性不如UMAP

检查、移除批次效应 => residual_model_formula_str参数

为了更加真实地反映差异基因的来源是生物学因素,而不是技术因素(比如细胞板批次、细胞培养差别、测序差别等),就首先要检查有没有所谓的”技术批次“对数据差异产生影响。

当进行降维分析时,应该经常检查批次效应,最好在colData(cds) 添加一列,其中注明细胞的批次信息(比如来自哪个细胞板),然后就能根据这个对细胞的批次进行可视化,结果最好是各个细胞亚群的不同批次混在一起,这样我们就能认为:降维所采用的”特异性“的特征并不来自批次

#对细胞的批次进行可视化
plot_cells(cds, color_cells_by="plate", label_cell_groups=FALSE)

pitch

如果真的担心不同批次会产生其他的影响,可以在降维之前对批次进行校正,保证后面的各个细胞群只来自一个批次,那么它们之间的分群差异就更可能是由于生物因素导致

# 假入要对批次进行校正
cds = preprocess_cds(cds, num_dim = 100, residual_model_formula_str = "~ plate")
# 校正后再降维
cds = reduce_dimension(cds)
# 再次检查批次效应
plot_cells(cds, color_cells_by="plate", label_cell_groups=FALSE)

细胞聚类

这是细胞分群过程中非常重要的一步。Monocle利用Louvain community detection 这个非监督聚类方法(它是phenoGraph算法的一部分),它和我们常见的Kmeans、hclust层次聚类等还不太一样,这个方法更倾向于找到一个网络中联系紧密的部分,而经常忽略节点的特性;而我们常见的聚类呢,它一般会忽视整体中各个部分的联系,而通过计算两个节点(目标)之间的距离(如欧式距离、曼哈顿距离、余弦相似度等) 找到相似的特性

按照cluster可视化

cds = cluster_cells(cds, resolution=c(10^seq(-6,-1)))
plot_cells(cds)
# 这个可视化函数如果不加任何参数,它默认对不同的cluster上色
# 用下面函数查看有哪些cluster:
cds@clusters$UMAP$clusters #或者
clusters(cds) 

cluster

按照partition进行可视化

不过这样细分看的太混杂,于是 Alex Wolf et al 利用他们开发的 PAGA 算法将一些小的cluster聚合成一个大的partition

plot_cells(cds, color_cells_by="partition", group_cells_by="partition")
# 检查有多少partition
cds@clusters$UMAP$partitions

partition

按照每个cluster对应的细胞类型

除了默认按照cluster编号进行标记不同的亚群,还可以按照每个cluster对应的细胞类型进行可视化

#按照每个cluster对应的细胞类型进行可视化
plot_cells(cds, color_cells_by=
### Monocle3 工作原理 Monocle3 是一种强大的工具,专门设计用于分析单细胞RNA测序(scRNA-seq)数据中的动态过程和异质性。该软件包能够识别不同细胞状态之间的转换路径,并构建伪时间轨迹来描述这些转变。 #### 数据预处理与质量控制 在应用Monocle3之前,通常需要对原始表达矩阵进行一系列预处理操作,包括过滤低质量细胞、去除批次效应以及标准化表达量等措施[^1]。这一步骤对于确保后续分析的有效性和准确性至关重要。 #### 构建降维空间 为了更好地理解高维度基因表达模式下的潜在结构,Monocle3采用多种算法实现数据降维。通过t-SNE或UMAP等方式可以将复杂的多维特征映射到二维平面上展示出来,使得研究人员更容易观察到样本间的相似度关系及其分布情况。 #### 细胞聚类与标记基因鉴定 基于降维后的坐标位置信息,利用图论方法(如Louvain社区检测)对细胞群体实施无监督分类;随后筛选出具有统计显著性的差异表达基因作为各簇特异性标志物,从而帮助定义不同的生物学功能单元或者发育阶段。 #### 建立分支模型并推导伪时间序列 核心部分在于建立一个反映细胞分化进程的树状拓扑结构——即“分枝”。此过程中会考虑多个可能的发展方向,并尝试找到最优解以拟合实际观测的数据点。一旦确定好最佳路径,则可以根据每个节点处所代表的状态给定相应的“伪时间戳”,进而描绘整个系统的演变历程。 ```r library(monocle3) # 加载示例数据集 data <- new_cell_data_set(counts = pbmc_counts, cell_metadata = colData(pbmc_cds)) # 预处理步骤... cds <- preprocess_cds(data) # PCA降维 reducedDim(cds) <- runPCA(cds) # 聚类分析 clusters <- cluster_cells(cds) # 计算伪时间 pseudotime <- learn_graph(cds) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值