monocle3
Monocle 3包提供了分析单细胞基因表达实验的工具包。
Monocle3和Monocle2并没有本质上的区别,只是把降维图从DDRTree改成了UMAP。原因可能是包的作者认为UMAP比DDRTree降维更能反映高维空间的数据。
monocle3的三个主要功能:
- 分群、计数细胞
- 构建细胞轨迹
- 差异表达分析
细胞聚类及鉴定亚群
安装包
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
# 一些依赖包
bioc_pkgs <- c('BiocGenerics', 'DelayedArray', 'DelayedMatrixStats',
'limma', 'S4Vectors', 'SingleCellExperiment',
'SummarizedExperiment')
for (bpkg in bioc_pkgs){
if (! require(bpkg,character.only=T) ) {
BiocManager::install(bpkg,ask = F,update = F)
require(bpkg,character.only=T)
}
}
# (可选)如果要在细胞聚类时设定分辨率参数(resolution),就要安装一个python包
install.packages("reticulate")
reticulate::py_install("louvain")
# 现在安装3版本,还是要通过github
devtools::install_github('cole-trapnell-lab/monocle3')
# 重启Rstudio,检测是否成功
library(Seurat)
library(monocle3)
library(tidyverse)
library(patchwork)
library(ggplot2)
library(dplyr)
加载数据
expression_matrix
是一个行为基因,列为细胞样本的表达矩阵cell_metadata
是一个数据框,行为细胞,列是细胞的属性(比如细胞类型、培养环境、培养时间等)gene_metadata
是一个数据框,行为feature信息(比如基因),列是基因属性(比如GC含量)
必须要满足:
- expression_matrix的行与gene_metadata的行对应
- expression_matrix的列与cell_metadata的行对应
# 下载数据(如果已经有了,可以跳过)
expression_matrix <- readRDS(url("http://staff.washington.edu/hpliner/data/cao_l2_expression.rds"))
cell_metadata <- readRDS(url("http://staff.washington.edu/hpliner/data/cao_l2_colData.rds"))
gene_annotation <- readRDS(url("http://staff.washington.edu/hpliner/data/cao_l2_rowData.rds"))
# 加载、探索数据
expression_matrix <- readRDS(file = 'cao_l2_expression.rds')
cell_metadata <- readRDS(file = 'cao_l2_colData.rds')
gene_annotation <- readRDS(file = 'cao_l2_rowData.rds')
dim(expression_matrix)
expression_matrix[1:3,1:3]
cell_metadata[1:3,1:3]
head(gene_annotation)
将数据存储在cell_data_set对象中
# 创建CDS(Cell Data Set)对象
cds <- new_cell_data_set(expression_matrix,
cell_metadata = cell_metadata,
gene_metadata = gene_annotation)
cds
数据预处理
# 对数据进行规范化和预处理
# 对数据进行规范化和预处理
cds <- preprocess_cds(cds, num_dim = 100) #大约2 mins
plot_pc_variance_explained(cds)
我们可以看到,使用超过100台PC只会捕获少量额外的变化,并且每增加一台PC都会使Monocle的下游步骤变慢。
降低维度并可视化细胞
可以使用t-SNE,这在单细胞rna测序中非常流行,或者使用UMAP。Monocle 3默认使用UMAP,它更适合于RNA-seq中的聚类和轨迹分析。调用reduce_dimension()
将数据的维数降低到X, Y平面,以便我们可以轻松地绘制它,请:
# umap降维
cds <- reduce_dimension(cds, preprocess_method = "PCA",reduction_method = c("UMAP"))
plot_cells(cds)
图中的每个点都代表cds对象中的不同细胞,可以看到不同的细胞分成了不同的群,有的群有几千个细胞,有的群只有少数几个,我们这里直接使用测试数据中做好的细胞标记
# 数据中一共提供了30类细胞(细胞类型及数量见:)
table(colData(cds)$"cao_cell_type")
# 根据这个上色
plot_cells(cds, color_cells_by="cao_cell_type")
# (另外除了用cao_cell_type细胞类型,还能用下面的任意一个)
colnames(colData(cds))
可以看到图中许多细胞类型再UMAP结果中靠的很近
根据基因表达量进行映射:
#根据基因表达量进行映射
plot_cells(cds, genes=c("cpna-2", "egl-21", "ram-2", "inos-1"))
使用tSNE方法降维的话:
#进行tSNE降维
cds <- reduce_dimension(cds, reduction_method="tSNE")
# 然后对tSNE结果可视化
plot_cells(cds, reduction_method="tSNE", color_cells_by="cao_cell_type")
其实可以看到,tSNE结果的各个细胞亚群内部的关联性不如UMAP
检查、移除批次效应 => residual_model_formula_str参数
为了更加真实地反映差异基因的来源是生物学因素,而不是技术因素(比如细胞板批次、细胞培养差别、测序差别等),就首先要检查有没有所谓的”技术批次“对数据差异产生影响。
当进行降维分析时,应该经常检查批次效应,最好在colData(cds) 添加一列,其中注明细胞的批次信息(比如来自哪个细胞板),然后就能根据这个对细胞的批次进行可视化,结果最好是各个细胞亚群的不同批次混在一起,这样我们就能认为:降维所采用的”特异性“的特征并不来自批次
#对细胞的批次进行可视化
plot_cells(cds, color_cells_by="plate", label_cell_groups=FALSE)
如果真的担心不同批次会产生其他的影响,可以在降维之前
对批次进行校正,保证后面的各个细胞群只来自一个批次,那么它们之间的分群差异就更可能是由于生物因素导致
# 假入要对批次进行校正
cds = preprocess_cds(cds, num_dim = 100, residual_model_formula_str = "~ plate")
# 校正后再降维
cds = reduce_dimension(cds)
# 再次检查批次效应
plot_cells(cds, color_cells_by="plate", label_cell_groups=FALSE)
细胞聚类
这是细胞分群过程中非常重要的一步。Monocle利用Louvain community detection 这个非监督聚类方法(它是phenoGraph算法的一部分),它和我们常见的Kmeans、hclust层次聚类等还不太一样,这个方法更倾向于找到一个网络中联系紧密的部分,而经常忽略节点的特性;而我们常见的聚类呢,它一般会忽视整体中各个部分的联系,而通过计算两个节点(目标)之间的距离(如欧式距离、曼哈顿距离、余弦相似度等) 找到相似的特性
按照cluster可视化
cds = cluster_cells(cds, resolution=c(10^seq(-6,-1)))
plot_cells(cds)
# 这个可视化函数如果不加任何参数,它默认对不同的cluster上色
# 用下面函数查看有哪些cluster:
cds@clusters$UMAP$clusters #或者
clusters(cds)
按照partition进行可视化
不过这样细分看的太混杂,于是 Alex Wolf et al 利用他们开发的 PAGA 算法将一些小的cluster聚合成一个大的partition
plot_cells(cds, color_cells_by="partition", group_cells_by="partition")
# 检查有多少partition
cds@clusters$UMAP$partitions
按照每个cluster对应的细胞类型
除了默认按照cluster编号进行标记不同的亚群,还可以按照每个cluster对应的细胞类型进行可视化:
#按照每个cluster对应的细胞类型进行可视化
plot_cells(cds, color_cells_by=